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Ultralow frequency~ULF! waves in the magnetosphere are thought to be driven by disturbances of
the magnetopause caused by the flow in the magnetosheath. In this paper a model showing how the
trapping and excitation of these modes depends upon the shear flow and propagation angle is
presented. The ideal magnetohydrodynamics~MHD! equations are used and the perturbations are
assumed to be linear. A bounded, uniform magnetospheric cavity, with a finite plasma beta,
separated by a vortex sheet from a semi-infinite, field-free, flowing magnetosheath is considered. It
is shown that the bounded model allows the trapping and excitation of both fast and slow cavity
modes, and that unstable surface modes may also exist. Slow surface modes are unstable only for
a small interval of flow speed, becoming fast surface modes for higher flows. Slow cavity modes
have small growth rates and are unlikely to be significant observationally. It is shown that fast
modes propagating quasiparallel to the flow may be excited for realistic flow speeds, but that for
nonparallel modes, much higher flows are required. Finally, an exact method for predicting the onset
of instability for fast modes is derived and is shown to occur at the coalescence of modes of opposite
energy. © 1999 American Institute of Physics.@S1070-664X~99!01510-4#
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I. INTRODUCTION

In this paper we present a model for the trapping a
excitation of oscillations in the magnetosphere by the sh
flow discontinuity across the magnetopause.

ULF oscillations with periods of 150–600 s~Pc5 pulsa-
tions! are almost continuously observed in the magne
sphere. Pc5 wave power has been shown to be well co
lated to the speed of the upstream solar wind,1 with a
significant increase in amplitude for solar wind speeds ab
500 km/s.

The source of energy for these modes has been
gested to be the Kelvin-Helmholtz instability~KHI ! at the
magnetopause driving field line resonances~FLRs! within
the magnetosphere.2–4 Later it was suggested that the FLR
could be driven by global standing waves rather than Kelv
Helmholtz ~KH! surface waves. Cavity mode theory5–7 pro-
duces a structure of frequencies determined by the na
frequencies of the cavity. Almost all models of cavity mod
in the magnetosphere have assumed the magnetop
boundary to be rigid so that the effect of flow in the magn
tosheath is neglected, and the excitation of the modes is
normally addressed. Indeed, the question of whether or
cavity modes may even be trapped in the magnetosphere
also been little studied.

That the KHI may occur at the magnetopause has b
known for over 40 years~e.g., Dungey8!. The first work on
the KHI in a magnetized plasma considered the stability o
system of unbounded incompressible plasmas either side
shear flow discontinuity~e.g., Chandrasekhar9!. The addition
of compressibility to the unbounded KHI model~e.g., Sen;10

Fejer;11 Southwood;12 Pu and Kivelson13! has a significant
effect on the KHI. These papers showed that there is bo
4071070-664X/99/6(10)/4070/18/$15.00
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lower cutoff speed and an upper cutoff speed, with
modes being stable below and above these speeds, re
tively. The lower cutoff speed is due to the stabilizing effe
of the magnetic tension and, when the propagation of
wave is along the flow, is determined by the Alfve´n speed
calculated using the component of the magnetic field alo
the flow14. The upper cutoff speed corresponds to the cha
of wave form in either~or both! of the media from evanes
cent ~‘‘surface’’ modes! to oscillatory ~‘‘cavity,’’ ‘‘wave-
guide’’ or ‘‘body’’ modes!. The oscillatory modes carry en
ergy away from the boundary stabilizing the KHI. A
incompressible plasma cannot support these propaga
modes and so has no upper cutoff speed.

Models of unstable surface modes in an unbounded
dium containing a vortex sheet show an unbounded incre
of the growth rate the wave number and the model bre
down as the wavelengths become infinitely small. Studies
unstable surface modes with a boundary layer of finite thi
ness~Walker15 and Miura and Pritchett16! show that the sur-
face wave now has a maximum growth rate for a finite wa
number, with the growth rate approaching zero as the w
number→`, and the upper cutoff speed is removed so t
the modes are unstable for all flow speeds above the lo
cutoff ~e.g., Miura14!.

Fujita et al. ~1996!17 considered a bounded nonunifor
magnetosphere adjoining a flowing magnetosheath wit
free magnetopause boundary. They used the boundary
dition in the magnetosheath that the amplitude of any per
bations must decay in space away from the magnetopa
They found that for large flow speeds the growth rate ha
maximum with respect to the wave number indicating a p
ferred wavelength for the oscillations. The growth rate
0 © 1999 American Institute of Physics
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4071Phys. Plasmas, Vol. 6, No. 10, October 1999 Kelvin-Helmholtz driven modes of the magnetosphere
these modes approaches zero as the wave number bec
larger. They also showed that, although the growth rate
has a maximum with respect to the flow speed, it now te
to zero only as the flow tends to infinity. This is in contrast
the unbounded modes containing a vortex sheet wh
growth rate has a maximum, and then, above the upper
off speed, is identically zero. In other words, a bounded n
uniform magnetosphere has no upper cutoff speed. Ph
cally, this corresponds to the fact that the energy can
longer simply propagate away from the magnetopause on
magnetosphere side as the waves are reflected by the
boundary. Fujitaet al.17 attributed these new properties
the nonuniform nature of the magnetosphere. They a
looked at the solution of the dispersion relation for nonz
wave number perpendicular to the flow. They found that t
gave rise to an enhancement in the frequencies found
that there was a cutoff flow-aligned wave number bel
which the modes were stable.

Mannet al.18 considered a similar model to that of Fuji
et al.,17 specifically a bounded uniform magnetosphere w
zero plasma pressure connected to a field-free uniform fl
ing magnetosheath by a free sheet magnetopause~as our
model shown in Fig. 1 withP150 andb50!. They showed
that the same properties found by Fujitaet al.17 were also
found in a uniform magnetosphere and thus it is the fact
the magnetosphere is bounded~rather than nonuniform!
which has the most significant effect on the behavior of
stable surface modes at the magnetopause. Because of
model geometry, Mannet al.18 found that the fast surfac
mode is unstable for all nonzero flow speeds~the lower cut-
off speed is reduced to zero!. This is because the stabilizin
force of the magnetic tension is absent since the wave pr
gation does not bend the magnetic field. Mannet al.18 used
an outgoing boundary condition in the magnetosheath
the group velocity of the waves there should be direc
away from the magnetopause in the flowing frame of
magnetosheath. This replaces the condition of Fujitaet al.17

that the modes should decay in amplitude away from
magnetopause. Besides the Mannet al.18 condition being
more realistic than that of Fujitaet al.17, it also allowed them
to identify more complex behavior of the normal modes.
particular, this condition enabled Mannet al.18 to find cavity
modes that decay in time and grow spatially in the mag
tosheath for low flow speeds. These modes carry ene
from the magnetosphere to the magnetosheath. They

FIG. 1. A schematic representation of our bounded magnetosphere m
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‘‘leaky’’ cavity/wave guide modes resulting from partial re
flection and transmission of the magnetospheric waves a
magnetopause. The cavity modes were shown to bec
trapped for moderate flow speeds, which corresponds to
total internal reflection of the magnetospheric waves b
perfectly reflecting magnetopause. The modes become
stable or ‘‘over-reflected’’ for high flow speeds. In the ca
of over-reflected modes, energy from the magnetoshe
flow is fed into the oscillations in the magnetosphere,
creasing their amplitude.

In this paper we consider a model similar to that
Mann et al.,18 however, we include finite plasma pressure
the magnetosphere and also consider modes propagatin
an arbitrary direction. This allows us to study both fast a
slow magnetoacoustic waves in the magnetosphere. We
that the onset of instability for all modes depends stron
upon the angle between the magnetic field and the w
vector~and hence the angle between the wave vector and
magnetosheath flow! and show that the wave number sele
tion found by Fujitaet al.17 occurs for modes at all angles i
a uniform magnetosphere model.

In analyzing the modes that we find in our model w
employ the concept of negative energy waves~see Cairns;19

McKenzie;20 and also Joarderet al.21!. We show that modes
with group velocity directed away from the magnetopause
the moving frame of the magnetosheath may still feed ene
from the magnetosheath into the magnetosphere. We
that the onset of instability of both fast cavity/wave gui
and surface modes may be understood in terms of the
lescence of a positive energy mode with a negative ene
mode.

The structure of this paper is as follows: Sec. II prese
our model, Sec. III gives the governing equations and d
cusses the boundary conditions, Sec. IV presents the
cepts of wave energy and over-reflection and Sec. V d
cusses the results. In Sec. VI we derive a method
predicting the onset of instability for some of the modes, a
Sec. VII compares our results to observations and sum
rizes our findings.

II. MODEL

We have used the ideal magnetohydrodynamic~MHD!
equations to consider a model for the modes generated in
magnetosphere by the flow discontinuity across the mag
topause.

Our model consists of a bounded, uniform magne
sphere separated from an unbounded magnetosheath
free magnetopause, which we assume to be infinitely t
Figure 1 is a schematic diagram of our model. The magne
sphere is permeated by a constant magnetic field,B1
5(0,0,B1z), which is tangential to the discontinuity, and h
a finite pressure (P1) and density (r01). It has an inner
boundary which is taken to be perfectly reflecting, represe
ing the refraction of MHD modes by the increasing Alfve´n
speed closer to the Earth. The inner boundary is taken to
at x50 and the equilibrium magnetopause is atx5d. The
magnetosheath is taken to be field-free with constant equ

el.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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4072 Phys. Plasmas, Vol. 6, No. 10, October 1999 Mills, Wright, and Mann
rium pressure (P2) and density (ro2). The magnetosheath i
flowing in the y-direction with a constant speed (vo).

In order for this model to be in equilibrium we requir
total pressure balance across the magnetopause, given

P11
B1

2

2mo
5P2 . ~1!

Here, and throughout this paper, any quantity suffixed by
defines a magnetospheric quantity, while a suffix 2 rep
sents quantities in the magnetosheath. By choosing the
of the densities in the two regions (e5ro1 /ro2) and the
plasma beta~b! in the magnetosphere we can now derive
formula for the sound and Alfve´n speeds in the magneto
sphere in terms of the sound speed in the magnetosh
The sound speed in the magnetosphere is given by

cs1
2 5

b

e~11b!
cs2

2 , ~2!

and the Alfvén speed by

va1
2 5

2

ge~11b!
cs2

2 . ~3!

III. EQUATIONS

We have normalized the ideal MHD equations with r
spect to the depth of the magnetosphere,d, and the equilib-
rium sound speed,cs2, and density,ro2, in the magneto-
sheath.~Gas pressure is normalized by the quantitygP2,
magnetic fields byAgP2mo and time byd/cs2.! Then we
have added a small perturbation to each of our~constant!
equilibrium quantities and linearized the ideal MHD equ
tions for a uniform medium, to give

roS ]

]t
1vo.¹ Du52

¹

g
~p1g B.b!1~B.¹! b , ~4!

S ]

]t
1vo.¹ D r5ro¹.u, ~5!

¹.b50, ~6!

S ]

]t
1vo.¹ Db5~B.¹!u2B~¹.u!, ~7!

and

S ]

]t
1vo.¹ D p5cs

2S ]

]t
1vo.¹ D r. ~8!

Here,vo, B, P and ro are the normalized equilibrium flow
speed, magnetic field, pressure and density, respectiv
while u, b, p andr are the perturbations to these quantitie
respectively. The coefficients of the perturbed quantities
these equations are now independent oft, y andz, so we may
look for solutions of the form

u~x,y,z,t !5u~x!exp i ~kyy1kzz2vt !. ~9!

Since the equations are normalized, the frequency,v, and the
wave numbers,ky and kz , are variables of the normalize
system. We define the tangential wave vector,k, such that
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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k5kyêy1kzêz, ~10!

and

k5Aky
21kz

2. ~11!

We also define the angle between the tangential wave ve
and the magnetospheric magnetic field in they2z plane as

a5arccosS k.B1

kB1
D . ~12!

The relative directions ofk, vo andB1 are illustrated in Fig.
2.

We will be analyzing both the stable and unstable beh
ior of the system and so will assume thatv is a complex
number (v5v r1 iv i). Thus,v r is considered to be the fre
quency andv i is the growth~or decay! rate of the amplitude
of the oscillations.

The total pressure perturbation in the magnetosph
(pT5p11B1b1z) can be shown to satisfy the second ord
differential equation

d2pT

dx2
1m1

2pT50, ~13!

where

m1
25

~v22k2cf
2!~v22k2cslow

2 !

~cf
21cslow

2 !~v22k2cT
2!

, ~14!

and m1 is the wave number in thex-direction in the mag-
netosphere. Whena50, Eqs.~13! and~14! are equivalent to
the equation for the motion of waves in a magnetic s
found by Roberts,22 however, it should be noted that in tha
paper, the wave equation is written asd2pT /dx22mR

2pT

50, where the wave number is defined asmR
252m1

2(a
50). Herecf andcslow are the fast and slow magnetoacou
tic speeds defined by

cf /slow
2 5

1

2
~~va1

2 1cs1
2 !1/

2A~va1
2 1cs1

2 !224va1
2 cs1

2 cos2 a!, ~15!

respectively, andcT is given by

cT
25

cf
2cslow

2

cf
21cslow

2
5

va1
2 cs1

2

va1
2 1cs1

2
cos2 a. ~16!

FIG. 2. A schematic diagram showing the relative directions ofB1, the
magnetic field in the magnetosphere,k, andvo, the magnetosheath velocity
in the y2z plane.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Whena50, cT is the tube speed for a magnetic slab defin
by Roberts,22 and socT may be thought of as the compone
of the tube speed along the propagation vectork. These three
characteristic speeds satisfy the ordering

cT
2,cslow

2 ,cf
2 . ~17!

The perturbed pressure in the magnetosheath (p2) satis-
fies the equation

d2p2

dx2
1m2

2p250. ~18!

Herem2 is thex-component of the wave number in the ma
netosheath given by

m2
25

v822k2cs2
2

cs2
2

. ~19!

We have definedv8 as the Doppler shifted frequency of th
oscillations in the rest frame of the magnetosheath and
related tov by

v85v2kvo sin a. ~20!

By assuming the equilibrium quantities are functions
x rather than constants we can obtain two first order ordin
differential equations which will enable us to specify t
matching conditions across the magnetopause (x51 in our
normalized system!. We must now retain terms in our gov
erning equations that are concerned with the gradients of
equilibrium quantities. For example, the linearized mom
tum equation now becomes

roF S ]

]t
1vo.¹ Du1~u.¹!voG

52¹~pTo1pT!1~B.¹!b1~b.¹!B, ~21!

wherepTo5po1B2/2, and our other equations are similar
modified. The equations are

dpT

dx
5 iro~x!@~v2kvo~x!sin a!22k2va1

2 ~x!

3cos2 a#
ux

~v2kvo~x!sin a!
, ~22!

d

dx H ux

~v2kvo~x!sin a!J
5

im2~x!

ro~x!~~v2kvo~x!sina!22k2va1
2 ~x!cos2a!

pT ,

~23!

where

m2~x!5
~~v2kvo~x!sin a!22k2cf

2~x!!

~cf
2~x!1cslow

2 ~x!!

3
~~v2kvo~x!sin a!22k2cslow

2 ~x!!

~~v2kvo~x!sin a!22k2cT
2~x!!

. ~24!
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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We now assume thatvo(x) and the other equilibrium
quantities are step functions at the magnetopause, and
grate Eqs.~22! and~23! over the region@12d,11d#. Taking
the limit as d→0, we find that the quantitiespT and
ux /(v2kvo sina) must be continuous at the magnetopau
Hence, our matching conditions across the magnetopaus

pT~x51!5p2~x51!, ~25!

and

ux1~x51!

v
5

ux2~x51!

v8
. ~26!

Equation~25! corresponds to the continuity of total pressu
across the magnetopause and Eq.~26! implies that the dis-
placement of the magnetopause is the same for both m
~so that there is no cavitation!. These are the quantities tha
we would expect to be conserved at a discontinuo
boundary.9,12,20 We require the boundary atx50 to be to-
tally reflecting, which may be imposed by the constraint

ux1~x50!50. ~27!

Equation~22! then implies the condition

dpT

dx
~x50!50. ~28!

Finally, we require thex-component of the group velocity o
the perturbations in the rest frame of the magnetosheath t
directed away from the magnetopause. Becausev is com-
plex, the wave numbers will also be complex. In this con
tion, therefore, we consider only the real part of the gro
velocity in thex-direction and require it to be positive in th
rest frame of the magnetosheath. The dispersion relation
sound waves in the rest frame of the magnetosheath is

v825~m2
21k2!cs2

2 , ~29!

where in the rest frame of the magnetosheath the waves
cillate with frequencyv8. The component of the group ve
locity of these waves in thex-direction is given by

vgx5
]v8

]m2
5

m2

v8
cs2

2 5
Re~m2!1 i Im~m2!

Re~v8!1 i Im~v8!
cs2

2 . ~30!

The real part of this component of the group velocity is

Re~vgx!5
Re~v8!Re~m2!1Im~v8!Im~m2!

Re~v8!21Im~v8!2
cs2

2 . ~31!

The condition that the real part of the group velocity in t
x-direction is positive in the rest frame of the magnetoshe
then becomes

Re~v8!Re~m2!1Im~v8!Im~m2!>0. ~32!

It can be shown that when this condition is satisfied the r
part of the x-component of the phase speed, Re(vphx)
5Re(v8/(m2))is always positive. Therefore this condition
equivalent to requiring that the phase speed in the magn
sheath rest frame is directed away from the magnetopaus
previous models~e.g., Fujitaet al.17! the condition that the
amplitude of the observations decreases asx→` has been
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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4074 Phys. Plasmas, Vol. 6, No. 10, October 1999 Mills, Wright, and Mann
used, which in our model would involve the condition th
Im(m2).0. The more general condition that we have us
here allows us to find modes which decay in time and hav
spatially growing nature in the magnetosheath~leaky
modes!. We find that for low flows, most modes with pos
tive phase speed in the magnetosheath are in fact leak
the case of stable modes (v i50), however, the wave num
ber in the magnetosheath is purely imaginary, and so
have the condition that the modes must be evanescent, w
in this special case gives our ‘‘outgoing’’ condition in th
magnetosheath as

Im~m2!.0. ~33!

Combining the solutions to the wave equations~13! and
~18! with the various boundary conditions yields the disp
sion relation

eS v22k2va1
2 cos2a

m1
D S exp~ im1!1exp~2 im1!

exp~ im1!2exp~2 im1! D2
v82

m2
50.

~34!

Whena50, in the absence of flow, and considering only re
v, this dispersion relation reduces to that in Roberts.22 The
boundary condition atx50 in our model without flow is
equivalent to a sausage mode boundary condition in the
ter of the slab considered by Roberts, and so our model
yield only half the modes found in that paper. The other cl
of modes~kink modes! could be generated by replacing Eq
~27! and ~28! with the condition pT(x50)5dux1 /dx(x
50)50. Depending upon the sign ofm1

2 ~i.e., by consider-
ing whetherm1 is real or imaginary!, this equation describe
both the body and surface modes found by Roberts. Allo
ing v to be complex means that this dispersion relation
scribes not only purely oscillatory or evanescent modes,
also modes that have both oscillations and a backgro
growth or decay inx.

We have used a two-dimensional Newton-Raphs
code, adapted from that in Ref. 23 to solve the dispers
relation numerically, yielding the complex eigenvaluesv for
a given set of parameters~k, a andvo). In order to maximize
the efficiency of the code we have incorporated a ba
stepping routine to check that each iteration decreases
magnitude of the complex dispersion relation. The results
the code have been checked~by taking the appropriate lim
its! qualitatively against the results in Roberts22 and Nakari-
akov and Roberts,24 and quantitatively against the resul
from Mannet al.18 We found that our code agreed with th
of Mann et al.18 to at least 1 part in 106. The code finds the
roots (v5v r1 iv i) such that the absolute value of both t
real and imaginary parts of the dispersion relation and
calculated increment in the real and imaginary parts of
frequency are less than the value ofd. In all casesd,1026,
and in most cases, it is three or four orders of magnitu
smaller.
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IV. THE THEORY OF NEGATIVE ENERGY WAVES

An important quantity in understanding the behavior
the instability at the magnetopause is the energy of the wa
Cairns19 showed that the energy per unit area of a sta
hydrodynamic wave is given by

E5
1

4
v r

]D

]v r
Ao

2 , ~35!

whereD is the dispersion relation of the waves andAo is the
amplitude of the displacement of the fluid.

We now show how this result is extended to magne
hydrodynamics~see also Joarderet al.21!. When the dis-
placement of the magnetopause is given by

h5Ao exp i ~kyy1kzz2vt !, ~36!

whereAo is the amplitude of the oscillation, the linearize
ideal MHD equations yield

pT~x51!5D1~v,k!h ~37!

and

p2~x51!5D2~v,k!h. ~38!

We have defined

D1~v,k!5
2gr1~v22k2va1

2 cos2 a!cosm1

m1
, ~39!

and

D2~v,k!5
2gr2v82sin m1

um2u
. ~40!

Then, the work done per unit area in setting up the wave
found to satisfy Eq.~35! with D defined so that

D56~D12D2!. ~41!

The sign ofD is chosen such that the energy of the wave
always positive when there is no flow in the system.

By looking at the sign of

C5v r

]D

]v r
, ~42!

we are able to classify waves as having either positive
negative energy. The presence of a negative energy w
will reduce the energy of the system in the frame of ref
ence being considered.

Cairns19 showed that this expression for the energy o
mode can be used to explain the onset of some instabili
In particular, he showed that the Kelvin-Helmholtz instab
ity occurs when a positive energy wave ‘‘coalesces’’ with
negative energy wave, a result that we will apply later. T
idea of the waves coalescing is used to describe the fact
the onset of instability occurs when the solutions for the t
waves with opposite energy converge to the same value.
ter this point the waves are unstable and the boundary c
ditions will select only one of the complex roots, so th
positive and negative energy modes are seen to ‘‘mer
into the same unstable solution. This type of instability
also classed as a reactive instability.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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V. RESULTS

A. Existence and classification of stable modes

We first examine the results that can be obtained usin
purely real frequency (v5v r). With real v, the sound
waves in the magnetosheath satisfy the dispersion relati

~v r2kvo sin a!25~m2
21k2!cs2

2 , ~43!

which implies thatm2
2 is real. Thusm2 is either purely real

(m2
2.0), implying propagating solutions in the magnet

sheath, or purely imaginary (m2
2,0), which gives evanes

cent solutions in the magnetosheath. Similarly,m1
2 @as de-

fined in Eq.~14!#, is also real whenv i50, and hencem1 is
either purely real or imaginary. In the case wherem1 is
purely real, the dispersion relation@Eq. ~34!# becomes

eS v r
22k2va1

2 cos2 a

im1
D cot m12

v r8
2

m2
50, ~44!

and, whenm1 is purely imaginary, Eq.~34! becomes

eS v r
22k2va1

2 cos2 a

in1
D coth n11

v r8
2

m2
50, ~45!

where we have definedm15 in1. In both cases the first term
of the equation is imaginary and, ifm2 is real the second
term is real. Hence, we can see that both the first and se
terms~the real and imaginary parts of the equation! must be
identically zero for the equations to be satisfied. This c
only be true for specific values ofvo and so, in general, ther
is no solution to the dispersion relation form2

2.0 ~realm2).
If m2 is imaginary, then the two terms may balance ea
other and need not be zero individually.

Thus solutions for realv may only occur whenm2
2,0

~i.e., m2 is imaginary!, and the modes must decay expone
tially away from the magnetopause in the magnetoshe
Thus, any oscillatory part of the mode is trapped or co
tained within the magnetosphere. With this condition, E
~43! may be rearranged to give

S v r

k
2vo sin a D 2

,cs2
2 . ~46!

This implies that eitherv r /k2vo sina,cs2, or vo sina
2vr /k,cs2, which together give the restriction on the pha
speed for a stable mode:

vo sin a2cs2,
v r

k
,vo sin a1cs2 . ~47!

With a5p/2 this condition reduces to that of Mannet al.18 It
is important to note that while this is a necessary condit
for the existence of stable modes, it is not a sufficient o
That is, when a nonzero growth rate is included, it is still tr
that stable modes may only exist within the given range
phase speed; however, there may also exist unstable m
within that range. This condition is not a sufficient conditio
because it takes into account only the dispersion relation
sound waves in the magnetosheath@Eq. ~43!#. The total dis-
persion relation@Eq. ~34!# also takes into account the cond
tions in the magnetosphere, and this will further restrict
region in which stable modes may occur.
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To include the effects of the magnetosphere and in or
to classify our stable modes we need to examine the sig
m1

2 when v i50, see Roberts.22 We find that form1
2,0 we

have evanescent modes in the magnetosphere~surface
modes! and for m1

2.0 we have modes that oscillate withi
the magnetospheric cavity~body, cavity or wave guide
modes!. The modes are then subdivided into fast and sl
modes depending upon their nature in the magnetosph
This distinction is also manifested in the phase speed of
modes. Modes withvph<cslow are classified as slow mode
whereas those withvph.cslow are fast modes. From Eqs.~14!
to ~17!, we find that slow surface modes may exist for

0,vph,cT , ~48!

wherevph is the phase speed of the mode (vph5v r /k), and
slow body modes may occur for

cT,vph,cslow. ~49!

Fast surface modes are found to exist where

cslow,vph,cf , ~50!

and fast cavity modes exist where

vph.cf . ~51!

Taking vo50 and lettingk→`, we find that the dispersion
relation for surface modes@Eq. ~45!# becomes

e
v r

22k2va1
2 cos2 a

n1
1

v r8
2

n2
50, ~52!

wheren25 im2. Assuming that ask→`, v r /k→const, we
can solve this equation to find the asymptotic value of
phase speed for the surface modes. We find that, when t
is no flow in the magnetosheath, only slow surface mo
may propagate fora50 ~when e50.192 andb50.5 these
modes havevph50.700). We will see later that in this cas
fast surface modes may only propagate as a result of a
zero flow. So now, combining the above criteria with that f
the existence of stable modes@Eq. ~47!#, our full criteria for
stable slow surface modes is that they may exist for ph
speeds in the range

max~0,vo sin a2cs2!,vph,min~cT ,vo sin a1cs2!, ~53!

where vo must satisfyvo sina2cs2,cT so that the above
inequality may be satisfied. Similarly, stable fast surfa
modes may exist for phase speeds such that

max~cslow,vo sin a2cs2!,vph,min~cf ,vo sin a1cs2!,
~54!

whenvo is in the rangecslow2cs2,vo sina,cf1cs2. Stable
slow body modes may exist for

max~cT ,vo sin a2cs2!,vph,min~cslow,vo sin a1cs2!,
~55!

wherevo sina2cs2,cslow. Finally, stable fast cavity mode
may exist for

max~cf ,vo sin a2cs2!,vph,vo sin a1cs2 , ~56!

wherevo sina1cs2.cf .
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



e

g
bo
o
s

ee
(

w
s
. A

i
e.
a

e
re
e

a
at

os

d
d
a

uld
re-

on-
low
tube

ode

des

ins
hus

ble

ce
nd

w
zero
le

d is

eeds

at a

ook
to-

two

4076 Phys. Plasmas, Vol. 6, No. 10, October 1999 Mills, Wright, and Mann
Figure 3 shows the dependence of the regions wh
modes may exist on the anglea. For all the figures in this
paper we have takenb50.5,g55/3 ande50.192, and in this
case we have takenvo54.0. The negative sloping shadin
shows regions where the magnetosphere can support a
mode (m1

2.0). The unshaded regions show the values
phase speed for which the magnetosphere may support a
face mode (m1

2,0). The boundaries are calculated usingcT ,
cf andcslow as outlined above@Eqs.~48! to ~51!#. The region
with positive sloping shading is the region of phase sp
within which the magnetosheath may support stablev i

50) modes, which are not growing or decaying in time@Eq.
~47!#. All of the modes can be divided into fast and slo
modes by the linevph5cslow, above which fast mode
propagate and below which slow modes may propagate
a increases, the regions where slow modes may exist dim
ish, until when a5p/2 only fast modes may propagat
Where the region within which stable modes may propag
~positive sloped shading between e and f! overlaps with the
unshaded regions, the conditions for purely evanesc
modes in both the magnetosheath and the magnetosphe
both satisfied and we may find stable surface modes. Th
are the regions defined by Eqs.~53! and ~54!. Similarly, the
overlap between the positive and negative sloping indic
the regions for which stable body modes may propag
defined in Eqs.~55! and~56!. The effect of changing the flow
speed is to change the gradient of the outline of the p
tively sloping shaded region. Whena50, the region where
stable modes may exist is independent of the value ofvo ,
and the region moves most rapidly with increasingvo when
a5p/2. Whena5p/2, we effectively have the case studie
by Mannet al.,18 although they found only fast surface an
cavity modes as they neglected plasma pressure in the m
netosphere.

The condition for stable modes@Eq. ~47!# is merely a

FIG. 3. The variation of the regions of phase speed~given in units ofcs2)
where different mode types may exist with propagation anglea. Of the
dotted lines,a is the magnetosheath sound speed (cs2), b is the tube speed
@cT(a50)# in the magnetosphere whena50, c is the sound speed in the
magnetosphere (cs1) andd is the Alfvén speed in the magnetosphere (va1).
Of the solid curves,e is the lower cutoff for stable modes (vph5vo sina
2cs2) andf is the corresponding upper cutoff (vph5vo sina1cs2), while the
curves of the fast speed,cf , slow speed,cslow, and tube speed,cT are
indicated by the arrows. Here as in all the following diagramsb50.5,
g55/3 ande50.192, and in this case we have takenvo54.0.
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necessary condition, not a sufficient one. Thus we sho
remember that we may have unstable modes within this
gion also. However, the behavior of the slow~shown in Fig.
8! and fast stable body modes whenvo sina2cs2

,cT and cf , respectively, is that the phase speed is c
fined between the upper and lower boundaries. For the s
body modes, the phase speed asymptotes toward the
speed ask→0, whereas the phase speed of the fast m
asymptotes toward the fast speed ask→`. Thus, the phase
speed of the mode remains in the region where stable mo
may propagate even whenvo sina2cs2 becomes arbitrarily
close tocT or cf , and so the phase speed always rema
within the bounds and the modes may remain stable. T
the slow body modes may become unstable only when

vo sin a2cs2.cT , ~57!

and similarly, the fast body modes may become unsta
when

vo sin a2cs2.cf . ~58!

B. The fast surface mode

First we will examine the behavior of the fast surfa
mode with changingk. Figure 4 shows the phase speed a
growth rate of the mode for various flow speeds,vo . Here
we have takena5p/2. We can see that for all nonzero flo
speeds, both the phase speed and the growth rate tend to
ask→0. With a5p/2 we can see that the mode is unstab
for all k. For low flow speeds, we find that the phase spee
always below the fast speed, and ask→`, v i→`. For
higher flow speeds, we find that the phase speed first exc
the fast speed, has a maximum and tends back down tocf as
k increases. Here, the growth rate also has a maximum
finite value ofk, and then tends to zero for largek.

In order to understand these results better, we now l
at the x-component of the wave numbers in the magne
sphere and magnetosheath (m1 andm2, respectively!. Figure
5 shows the real and imaginary components of these
wave numbers as functions ofk. For the low flow speeds
shown in Fig. 4~the cases withvo,4), the real and imagi-
nary parts of bothm1 andm2 increase in size linearly withk.

FIG. 4. Fast surface mode~a! phase velocities and~b! growth rates as a
function of k for a5p/2. Here we have plots forvo51.0 ~solid line!, vo

52.0 ~dotted line!, vo53.0 ~dashed line!, vo54.0 ~dot-dashed line! and
vo55.0 ~triple dot-dashed line!. The magnetospheric fast speed (cf) is
shown in~a! by a horizontal dashed line.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 5. The real and imaginary part
of the x-component of the wave num
bers in the magnetosphere@~a! and~b!,
respectively# and the magnetosheat
@~c! and~d!, respectively# as functions
of k for the same values ofvo as in
Fig. 4. In ~a! the valuep/2 is shown
by a horizontal dashed line.
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In both regions, the imaginary parts of the wave numb
increase more rapidly than the real parts, and for these
speeds the mode is dominantly evanescent in the magn
sphere. These modes correspond to those in Fig. 4 that
unbounded growth rate (v i→`) as k→`. For the modes
plotted in Fig. 4 which have bounded growth rate (vo

54,5), the imaginary parts of bothm1 andm2 are bounded
in k. The real part ofm1 approachesp/2 for largek and these
modes are dominantly oscillatory in the magnetosphere
value of p/2 for the wave number in thex-direction here,
indicates that these modes have only a quarter of a w
length of oscillation across the magnetosphere, whereas
ditional cavity models may trap a minimum of half a wav
length. These modes display the feature thatuRe(m2)u→`
and Im(m2)→0 as k→`. Thus, for sufficiently high flow
speeds the fast surface modes become oscillatory in the m
netosheath also, although they resemble trapped modes i
magnetosphere.

We now investigate the dependence of the stability
the fast surface mode on the parametersvo anda. Figure 6

FIG. 6. A contour plot of the growth rate,v i , plotted againstvo anda for
the fast surface mode withk52.0. The solid contours show regions o
positive growth rate indicating unstable modes, the dotted lines are in
gions of negative growth rate showing leaky mode. The region contain
no contour lines is the region for which stable surface modes exist.
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shows a contour plot of the growth rate againstvo anda for
the fast surface mode withk52.0. The solid lines indicate
positive values ofv i , whilst the dotted lines are the negativ
values. Here, it is obvious that although the mode is unsta
for any nonzerovo when a5p/2, there is a nonzero lowe
cutoff speed for all lower values ofa. As a→0, the value of
the cutoff tends to infinity, since propagation perpendicu
to the flow does not ‘‘feel’’ the flow, (vo.¹)[ ivo.k→0.
There is also an upper cutoff speed for the existence of le
modes and this also tends to infinity for smalla. The anglea
has two effects on the properties of the model that cause
change in stability. First, the flow speed is always multipli
by a factor of sina, and so for small angles, the effect of th
flow is very small. Second, the angle of propagation affe
the magnetic forces that the background field exert on
wave. The tension force is (B1.¹)b[ i (k.B1)b. Thus when
a5p/2 ~i.e., whenk.B150), no magnetic tension force i
created. Conversely, when the propagation vector has a c
ponent along the field line~i.e., k.B1Þ0), the oscillations
will tend to bend the field line, introducing magnetic tensi
forces which help to stabilize the system. Thus for a giv
flow, decreasinga will decrease the effect of the flow an
introduce stabilizing magnetic tension forces. Fujitaet al.17

studied the effect of a nonzerokz on the frequency and
growth rate of the oscillations. However, where we ha
fixed the value ofk5Aky

21kz
2 and varied the value of the

anglea, Fujita et al. fixed the value ofkz and variedky . In
this case, increasingky is equivalent to increasing bothk and
a5tan21(ky /kz). They found that there was a lower cutoff i
ky below which the modes are stable. We have looked at
dependence onk and a separately, and our results indica
that the stability of the fast surface modes has very li
dependence onk ~see also Fig. 7 below!, but a strong depen
dence ona. Hence, the lower cutoff inky found by Fujita
et al. is more clearly expressed as a cutoff ina in our model.

e-
g
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Finally, Fig. 7 shows the evolution of the fast surfa
mode with flow speed for various values ofk and with
a5p/4. Here we see that the speed at the onset of instab
of these modes has little dependence onk, and that while the
modes are stable, the values of the phase speed are a
independent ofk and the phase speed for the unstable mo
also has little dependence onk. We can understand this b
rearranging the dispersion relation for stable surface mo
@Eq. ~45!# in terms of the phase speed,vph, so that

e~vph
2 2va1

2 cos2 a!N2 coth~N1k!1~vph2vo sin a!2N150,
~59!

where N15n1 /k and N25n2 /k. Now we can see that th
only explicit dependence onk in the dispersion relation is
within the coth function. Since this function is very close
unity for most values ofN1k, the dispersion relation fo
stable surface modes is almost independent ofk. As we will
see in Sec. VI, the onset of instability may be predicted us
this form of the dispersion relation. Thus, the onset of ins
bility for fast surface modes will be almost independent ofk.

The growth rate of the unstable surface modes at
seems to increase linearly withk and this occurs for speeds
which the mode has unbounded growth rate ask→`. For
higher speeds, the mode has wave number selection and
we can see that the growth rate is small for allk. The dis-
continuity in v i occurs at the change over from unbound
to bounded growth rate. The change in behavior of
growth rate of the fast surface mode occurs approxima
where the linevph5vo sina2cs2 crosses the linevph5cf . In
other words, the growth rate becomes bounded when

vo*
cf1cs2

sin a
, ~60!

which in this case~a5p/4! means that the growth rate wi
be bounded forvo'4.7.

We can also see that, unlike models of an unboun
magnetosphere with a sheet magnetopause, there is no u
cutoff speed for the instability, although the growth rat
reach has a maximum and then decreases towards zerovo

FIG. 7. The variation with flow speed,vo , of ~a! the phase speed, and~b!
the growth rate of the fast surface mode fork52 ~solid line!, k54 ~dotted
line! andk56~dashed line!. Here we have takena5p/4. The diamond in~a!
shows the predicted point of onset of instability whenk52 and the triple
dot-dashed line in both shows the value ofvo at this point. The region
bounded by the horizontal lines and the diagonal lines is the potent
stable region@Eq. ~54!#.
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increases. Since the modes are purely evanescent in the
netosphere for lowvo , they are fairly insensitive to the inne
boundary. Thus there will be negligible dispersion~i.e., k
dependence! of the stable fast surface modes and the ph
speeds will be the same for anyk.

C. Slow surface modes

Now we examine the behavior of the slow surface mo
From Fig. 3 we see that, for all values ofa whenvo50, the
region of phase speed for which slow surface modes m
exist ~i.e., vph,cT), is almost entirely within the region fo
which stable modes may exist (vo sina2cs2,vph

,vo sina1cs2). Figure 8 shows the phase speed of the sl
surface mode as a function ofk whenvo50 anda50. For
small k the phase speed approachescs2, and ask increases,
the phase speed rapidly approaches its asymptotic va
which in this case isvph50.700. This mode is stable for a
k, which we can explain in the same way as we did for f
surface modes. The dispersion relation for evanescent m
@Eq. ~59!# has little dependence onk, and so we expect the
character of the modes to be independent ofk. We have also
shown the slow surface wave propagating in the oppo
direction, which whenvo50 is a reflection of the mode with
positive phase speed in thevph50 line.

Figure 9 shows the variation of phase speed with an
a, when vo50 and k510. This phase speed will be th
phase speed of the slow surface modes for almost allk at that
particulara. As a increases, the phase speed decreases
proaching zero ata5p/2. The phase speed of the mod
propagating backward is simply the negative of that sho
in this case. The dot-dashed line shows the value of the t

ly

FIG. 8. The dispersion diagram for slow surface modes whenvo50 and
a50. Here we have shown both the forward and backward propaga
modes.

FIG. 9. The variation of phase speed with angle for the slow surface m
whenvo50 andk510. The dot-dash lines shows the variation of the va
of the tube speed,cT , with a.
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speed,cT , asa changes. We can see that the phase spee
the slow surface mode is always belowcT whenvo50.

Now we investigate the development of the slow surfa
mode asvo increases. Figure 10 shows both the positive a
negative modes as a function ofvo when a5p/6 and k
510. As vo increases from zero, the phase speeds of b
modes increase. As the phase speed of the upper mod
proaches the tube speedcT , it flattens. The phase speed
the lower mode continues to increase, passing through z
until the phase speeds of the two modes are the same. A
point the modes become unstable and our outgoing boun
condition @Eq. ~32!# selects only one of the two possib
solutions. The phase speed of the unstable mode continu
increase and passes through the region where we would
pect to find slow body modes (cT,vph,cslow). However,
the modes have a significant growth rate and remain do
nantly evanescent in the magnetosphere~see Fig. 11!. The
growth rate reaches a maximum and decreases back to
when the phase speed is just abovecslow. The modes are
now stable fast surface modes, and once again we have
separate solutions. The phase speed of the lower solu
decreases, tending tocslow as t→`. The mode becomes un

FIG. 10. The phase speeds~a! and growth rates~b! of slow surface mode as
vo changes. In~a! the dashed line represents the stable fast surface m
and in ~b!, the dashed line shows the growth rate of the unstable m
formed by the coalescence of the two stable fast surface modes. In~a! the
dot-dash lines show the upper and lower boundaries of the region w
stable modes may exist (vo sina1cs2 andvo sina2cs2, respectively!, and
the dotted lines in ascending order show the tube speed,cT , the slow speed,
cslow and the fast speed,cf . The diamonds mark the predicted points
which modes will coalesce. The left and right dotted lines in~a! show the
values ofvo given by Eqs.~62! and ~63!, respectively.

FIG. 11. The real~solid line! and imaginary~dashed line! parts of the
x-direction wave number in the magnetosphere,m1, as a function ofvo for
the lower slow surface mode shown in Fig. 10.
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stable whenvo sina'cslow and has a small bounded grow
rate. The upper mode has an increasing phase speed
eventually coalesces with the original stable fast body m
~that hasvph.cslow for all vo , shown by a dashed line!.
These modes then become unstable, and the behavior o
resulting unstable mode is described in Sec. V B. The ph
speed of the lower stable slow surface mode increases
the same gradient asvo sina, so that its phase speed is

vph52vpho1vo sin a, ~61!

wherevpho is the phase speed of the upper slow surface m
whenvo50. The slow surface modes become unstable w
the phase speed is close to the tube speed,cT , so we can
approximate the flow speed at the onset of instability by

vo'
cT1vpho

sin a
. ~62!

Similarly, the modes become unstable again when the ph
speed is close to the slow speedcslow and so we can approxi
mate this by

vo'
cslow1vpho

sin a
. ~63!

The values ofvo predicted by Eqs.~62! and ~63! are shown
by the vertical dotted lines in Fig. 10. We can see that wh
this is not an accurate way of predicting the onset of ins
bility and the point at which the modes restabilize, the valu
are at least reasonably close. The onset of instability can
more accurately predicted, and a method for this is deta
in Sec. VI.

Finally, we look at the development of the unstable slo
surface mode withk. Figure 12 shows the phase speed a
growth rate of the mode whenvo53.3 anda5p/6 ~close to
the largest growth rate in Fig. 10!. Here we can see that th
phase speed varies little withk even when the mode is un
stable; however, the growth rate increases withk and v i

→` as k→`. Thus the unstable part of the slow surfa
mode has unbounded growth rate ask increases in the sam
way as the unstable fast surface mode.

D. Slow body modes

As we saw in Sec. V A, the range of phase speed
which slow cavity modes may exist depends very strongly
the value ofa. Where the effect of the flow is greatest, th
slow cavity modes are confined to a very small interval

e,
e

re

FIG. 12. The phase speed~solid line! and growth rate~dot-dashed line! of
the unstable slow surface mode whenvo53.3 anda5p/6.
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phase speed close to zero. In order to examine the mod
fully as possible, we have chosen to look at modes w
a5p/4, where, for our given parameters, the slow cav
modes are stable when there is no flow.

As detailed in Sec. V A, the slow cavity modes will on
become unstable when the lower limit in Eq.~55! changes
from cT to vo sina2cs2, and thus the slow cavity modes ca
only be unstable when

vo.
cT1cs2

sin a
, ~64!

so in this case the modes will be stable for allk when there is
no flow in the magnetosheath. Figure 13 shows the form
the stable slow cavity modes.

Next we look at the dispersion diagram for unstable sl
cavity modes. Figure 14 shows the behavior ofv r /k andv i

for vo52.55 anda5p/4. The upper and lower dashed line
mark the slow speed,cslow, and the tube speed,cT , respec-
tively. The triple dot-dashed line shows the position of t
lower cutoff for stable slow cavity modes from Eq.~55!,
which in this case isvph5vo sina2cs2. Here we see that the
form of the phase speed is changed little from the stable c
For low k, the phase speed is below the lower stability cuto
and the mode is unstable. The value of the growth rat

FIG. 13. The dispersion diagram showing stable slow cavity modes w
vo52 anda5p/4.
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very small and the imaginary part of the wave number in
magnetosphere will remain small compared to the real p
hence the character of the waves remains dominantly tha
a trapped cavity mode. Ask increases,v i also increases
reaching a maximum~which is much lower than the maxi
mum growth rate for the globally oscillatory modes seen
Sec. V B! and then rapidly decreasing to zero. As the pha
speed crosses the lower cutoff line, the modes become s
trapped slow cavity modes.

From these results we can see that the slow cavity mo
are never as fast growing as the fast modes or the slow
face mode and hence, we are much less likely to see t
excited to a significant amplitude in the magnetosphere.

E. Fast cavity modes

We saw in Sec. V A that stable fast cavity modes m
exist whenvo sina1cs2.cf and they may have phase spee
within the range

max~cf ,vo sin a2cs2!,vph,vo sin a1cs2 . ~65!

As explained in Sec. V A, the fast cavity modes will only b
unstable if the lower limit of Eq.~56! changes~in this case
from cf to vo sina2cs2). Hence, the fast cavity modes wi
only be unstable if

vo.
cf1cs2

sin a
. ~66!

We may write the dispersion relation for stable cavity mod
@Eq. ~44!# as

tan~m1!5
n2~v22k2va1

2 cos2 a!

m1~v2kvo sin a!2

5
n2~v22k2va1

2 cos2 a!

~v2kvo sin a!2

3A ~cf
21cslow

2 !~v22k2cT
2!

~v22k2cf
2!~v22k2cslow

2 !
, ~67!

where n25 im2. Using this form of the dispersion relatio
and defining

n

ich
FIG. 14. The phase speed~solid line and left-hand axis!
and growth rate~dot-dashed lines and right-hand axis!
as functions ofk for slow cavity modes whenvo.(cT

1cs2)/sina. Herevo52.55 anda5p/4. ~The triple dot-
dashed line is the phase speed cutoff, below wh
modes are unstable.!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



pe

-

v

e
m
te

s
th

d
l

n

th

fl

ere
ode
ode

e. A

es
tically
n
er as
odes

ate
ded

ode
ity

ere.
x-
ly
inc-
ible
ome
glo-

ed
ed, it
be
s

ese
d so

av-

able
flow
ion.
ble

be-
table

the

or
eed

v-
es
ay

or
the

as

e
fs

4081Phys. Plasmas, Vol. 6, No. 10, October 1999 Kelvin-Helmholtz driven modes of the magnetosphere
A25
m1

2

k2
5

~vph
2 2cf

2!~vph
2 2cslow

2 !

~cf
21cslow

2 !~vph
2 2cT

2!
, ~68!

we see that at the upper end of the range of phase s
where stable modes may exist (vph5vo sina1cs2), n250
and therefore tan(m1)[tan(A(vph)k)50. Thus the upper cut
off for stable fast body modes occurs when

k5
np

A~vo sin a1cs2!
. ~69!

As k increases, the phase speed of the stable fast ca
modes tends to the fast speed,cf ~see for example
Roberts22!. Whenvo satisfies

cf2cs2

sin a
,vo,

cf1cs2

sin a
, ~70!

~i.e., the flow is fast enough to allow stable cavity mod
@Eq. ~56!#, but not fast enough for those modes to beco
unstable@Eq. ~66!#!, stable fast cavity modes may propaga
for all k greater than the cutoff defined in Eq.~69!.

In Fig. 15 we show the dispersion diagram for the fa
cavity modes when the flow speed is fast enough to allow
modes to become unstable@as defined in Eq.~66!#. We have
usedvo56.0 anda5p/4. As well as the modes that we fin
when vo,(cf1cs2)/sina, we find that there are additiona
modes that begin at the lower cutoff~given by vph

5vo sina2cs2) and have phase speed increasing ask in-
creases. The value ofk at the lower extreme of the region i
which stable modes may propagate is found by placingvph

5vo sina2cs2 in the dispersion relation@Eq. ~67!#. Noting
that n2 must be zero~for a stable mode!, we find that the
value ofk at the cutoff is

k5
np

A~vo sin a2cs2!
. ~71!

Physically, these waves correspond to the fast modes
exist with negative phase speed whenvo50. In the frame of
the magnetosheath, these modes propagate against the
~and at the lower extreme they have phase speed2cs2 in the

FIG. 15. ~a! The dispersion diagram for the fast cavity modes in the c
vo.(cf1cs2)/sina ~in fact, herevo56.0 anda5p/4!. The predicted points
of onset on instability~derived in Sec. VI! are shown by diamonds, and th
dotted lines mark the values ofk at the onset. The upper and lower cutof
and the fast speed are also shown.~b! The growth rates as functions ofk for
the modes shown in~a!. The dotted lines again show thek value of the
predicted onset of instability.
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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frame of the magnetosheath!, but once the flow is sufficiently
high, the modes become oscillatory in the magnetosph
frame. Ask increases, the phase speed of the upper m
branch decreases, whilst the phase speed of the lower m
branch increases until the two modes meet and coalesc
fuller description of this is given in Sec. VI.

For higherk beyond the point of coalescence, the mod
are unstable. The phase speed decreases and asympto
approachescf for largek. The growth rate of the mode is, i
most cases, bounded. The growth rate is of the same ord
that of the unstable fast surface mode and so these m
will also be easily observed.

However, as with the fast surface mode, the growth r
is not always bounded. The fast cavity modes have boun
growth for lowvo ~above the minimum speed for instability!.
However, at the same speed at which the fast surface m
becomes globally oscillatory, the fundamental fast cav
mode starts to have an unbounded growth rate ask→` and
will become dominantly evanescent in the magnetosph
Thus the ‘‘lowvo’’ surface and fundamental body mode e
change character asvo increases to being predominant
body and surface modes, respectively. Evidently the dist
tion between body and surface modes in a compress
plasma is not as clear as in an incompressible one. At s
higher flow speed this new surface mode again becomes
bally oscillatory and the second harmonic~rather than the
fundamental! fast cavity mode now develops an unbound
growth rate, and assumes a surface mode structure. Inde
would appear that for any nonzero flow, there will always
one mode whose growth rate increases without bound ak
→` and is predominantly a surface mode. However, th
modes have large spatial decay in the magnetosphere an
are unlikely to be observed within the magnetospheric c
ity.

The development of a fast body mode as a function ofvo

is shown in Fig. 16. The mode is leaky for smallvo with
phase speed greater than that in the region where st
modes are possible. The mode remains leaky as the
increases, even for some of the potentially stable reg
However, farther into the region the mode becomes a sta
fast cavity mode. Further increasing the flow, the mode
comes unstable. We again see that the mode is also uns
for some values ofvo within the range of potentially stable
phase speed, and we will develop a method for predicting
onset of the instability in the next section.@The discontinuity
in Im(m2) is because of a branch cut inm2 in the complex
plane.# The ability of the magnetospheric cavity to excite,
even to trap waves, is strongly dependent on the flow sp
in the magnetosheath.

VI. PREDICTION OF THE ONSET OF INSTABILITY

We have found that the onset of instability for slow ca
ity modes in our model is predicted exactly by the extrem
of the region of phase speed for which stable modes m
exist. However, this is not true for either the fast cavity
surface modes, and we now show how we may predict
exact position of onset of instability for these modes.

e
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A. Fast cavity modes

As we have seen from our results, the onset of instab
for each fast mode occurs within the region of phase sp
for which stable modes may exist. In order to examine
solutions more closely we have rewritten the dispersion
lation for trapped cavity modes~having v i50) asDR50,
where

DR5tan~A~vph!k!2F~vph!, ~72!

where

FIG. 16. ~a! The phase speed~solid line! and growth rate~dot-dashed line!
as functions ofvo for the fundamental fast cavity mode withk53 and
a5p/4 ~the upper branch in Fig. 15!. The diamond represents the predict
point of the onset of the instability, and the dotted line shows thevo value at
this point. The triple-dot-dashed lines show the positions of the upper
lower cutoffs of the region where stable modes may exist. The dashed
indicate the values ofvo between which the fast modes are stable for allk.
~b! The real~solid line! and imaginary~dot-dashed line! parts of the mag-
netosphere wave number of the mode, and~c! the real ~solid line! and
imaginary~dot-dashed line! parts of the magnetosheath wave number.
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F~vph!5e
S~vph!~vph

2 2va1
2 cos2 a!

A~vph!~vph2vo sin a!2
, ~73!

S2~vph!52
m2

2

k2
5

cs2
2 2~vph2vo sin a!2

cs2
2

, ~74!

andA is as defined in Eq.~68!. As explained in Sec. V A, the
fast cavity modes only become unstable ask→` when

cf,vo sin a2cs2 , ~75!

and, within the stable range given by Eq.~47!, bothA andS
are real.S is chosen to be positive to ensure spatial decay
the magnetosheath, and the sign ofA is arbitrary, so we
assume it to be positive~if we took A negative, the disper-
sion relation we are solving would simply become2DR

50).
ExaminingF within the region of phase speed for whic

stable modes may exist@Eq. ~47!# and where Eq.~75! is
satisfied, we see that it is singular atvph5vo sina, and that
F→0 asvph→vo sina6cs2 ~i.e., whereS50). AlthoughF
50 when vph5va1 cosa, this does not occur within the
range of phase speed we are considering asva1 cosa<cf for
all a. Figure 17 shows the form ofF within this region when
vo55 anda5p/4. The function is shown both on a larg
and small scale to emphasize the behavior at the middle
end points of the region, respectively. In both plots the d
ted lines represent the end points of the region where st
modes may occur, and the dot-dashed line represents
middle of the region whereF is singular. Figure 18 showsF
as a function ofvph with the function tan(Ak) over-plotted in
a dashed line for various values ofk. We see that for lowk,
the dashed line is almost straight, but ask increases the pe
riod of the tan function decreases, and the number of cro
ing points of the two functions~corresponding to values o
vph whereDR50) increases. From this we can see that th
will be more stable roots of the dispersion relation ask in-
creases, a fact which was borne out by our numerical s
tions of the dispersion relation, see Fig. 15.

Taking vph5c15vo sina2cs2~so that F50) and a
given low value ofk, we know that

tan~A~c1!k!.0, ~76!

and thereforeDR(c1).0.

d
es

FIG. 17. The form ofF within the region of phase speed in which stable fa
body modes may exist whenvo55 anda5p/4.
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Now we assume that the first value of the phase sp
~above the lower cutoff for the existence of stable mod
vph5vo sina2cs2) at which tan(Ak)→` is at phase spee
vph5c2. In the first instance we will assume thatc2

,vo sina. At this point, we know thatDR(c2).0. The
functionDR is continuous in the range (c1 ,c2) and so there
are three possibilities for the solutions of the dispersion
lation within this range:

~i! Two real, distinct solutions of Eq.~34!;
~ii ! No real solutions of the dispersion relation@there

will be two complex conjugate solutions, of which we w
pick the one which satisfies Eq.~32!#, or;

~iii ! One real, ‘‘double’’ root of the equation~i.e., a root
that touches but does not cross theDR50 line!. This must
then be a turning point of the dispersion relation with resp
to vph and at this point

DR50 and
]DR

]vph
50. ~77!

In fact, althoughF is not strictly continuous atvph

5vo sina, the above analysis holds for all values ofc2

.vo sina2cs2 becauseF is always positive. Now, since w
know from our numerical results~see Fig. 15! that there are
two real roots of the dispersion relation for lowk, and at
largerk these roots have become a single complex root~cho-
sen from the two possible complex roots by our outgo
condition in the magnetosheath!, it follows that the transition
must occur at a ‘‘double’’ real root. Thus, by solving th
simultaneous equations given in Eq.~77! for the variablesk
andvph, we can numerically predict the onset of instabili
for these two fundamental modes. Ask increases, new
branches of the tan function encounter the curve ofF for low
vph. Thus successively higher harmonic modes have dou
roots at which they go unstable. However, this will not be
case for all higherk. The lower branch of each harmonic fir
appears at a value ofk such that tan(Ak)50 when vph

5vo sina2cs2. However, if at that value ofk

FIG. 18. The form ofF within the region of phase speed in which stable fa
body modes may exist whenvo55 anda5p/4, with the function tan(Ak)
overplotted as dashed lines for various values ofk.
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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dvph
~ tan~Ak!!.

dF

dvph
, ~78!

the tan function will only encounter the curve ofF at that
one point and so there will be no double root. Differentiati
the left-hand side of Eq.~78!, we get

d

dvph
~ tan~Ak!!5

dA

dvph
k sec2~Ak!, ~79!

and, since tan(Ak)50 implies thatAk5np, andA andF are
independent ofk, we can use this to simplify Eq.~69! so that
our upper limit on the value ofk at which a double root can
occur is

k.
dF

dvph
Y dA

dvph
~80!

evaluated atvph5vo sina2cs2. Oncek is above this limit
the fast cavity modes will become unstable at exactlyvph

5vo sina2cs2, and the lower branch of each harmonic w
not be apparent.

Figure 15 includes the points~marked by diamonds! that
we have predicted for the onset of instability using a tw
dimensional~2D! Newton method to solve the two equa
tions. Here we have used a second order Taylor series
proximation to find the value of the derivative, but the co
still converges quickly to the double root.

Similarly, if we fix k, we can solve the simultaneou
Eqs. ~77! for vph and vo ~or a! to predict the onset of the
instability in terms of those variables. We show the predic
onset of instability in Fig. 16 by a diamond and the dott
line marks thevo value of this point. The predictedvo value
agrees exactly with the value at which the instability occ
for our numerical results.

B. Surface modes

The dispersion relation for stable surface modes@Eq.
~59!# may be written as

DS5N1~vph2vo sin a!2tanh~N1k!1eN2~vph
2 2va1

2

3cos2 a!50, ~81!

where N1
252m1

2/k2 and N2
252m2

2/k2. By analyzing the
two terms of the equation in a similar way to that used
the dispersion relation for fast cavity modes, we may ag
show that the onset of instability may be predicted by sim
taneously solving the equations

DS50, and
]DS

]vph
50, ~82!

for vph and either ofvo anda. Figure 7 includes the point a
which instability is predicted by this method whenk52 as
shown by a diamond. The vertical three dot-dash line sho
the predicted value ofvo and is in excellent agreement wit
the onset of instability given by our numerical solutio
Similarly, in Fig. 10 we have plotted the points that satis
Eqs. ~82! as diamonds. The points predict excellently t

t
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points where the stable surface modes coalesce and be
unstable, as well as the point where the unstable mode
comes stable and splits into two modes.

In Sec. V B we saw that the onset on instability of t
fast surface modes is almost independent ofk ~see Fig. 7!.
Examining Eq.~81! we can see that the only explicit depe
dence onk when the dispersion relation is written in terms
the phase speed is within the function coth(N1k). This func-
tion only varies significantly whenN1k is small and is close
to unity for N1k*1. Thus the double roots of the dispersio
relation will vary little ask varies.

C. The onset of instability and the energy of the
waves

Referring back to our definition of the wave energy
the stable modes@Eqs.~35! and~42!#, we can show that, for
given values ofk, vo anda, C can be rewritten as

FIG. 19. ~a! The dispersion diagram showing the upper~solid line! and
lower ~dot-dashed line! fundamental fast cavity modes whenvo55.0 and
a5p/2. The diamond shows the predicted point of coalescence and ons
instability and the dotted line shows thek value of this point.~b! A plot
showingC ~which is proportional to the energy of the wave! as a function of
k for the stable part of the two modes, and~c! an enlargement of the are
around the point of coalescence. The dotted line shows the predictedk value
of the coalescence.
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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C5vph

dDR

dvph
. ~83!

Figure 19 shows the coalescence of the fundamental fast
ity modes in the top diagram, again with the predicted on
of instability shown by a diamond. The lower diagram sho
the value ofC for the two modes while they are both stabl
We can see that the upper mode has positive energy, w
the lower has negative energy. Ask increases toward the
value at which instability occurs~represented here by a ve
tical dotted line!, the magnitude of the energy of both mod
tends toward zero. Thus this instability occurs when a po
tive and negative energy wave coalesce, and the mathem
cal analysis above identifies the point at whichC50 and the
two different energy waves meet.

In Fig. 10 the slow surface mode that had negative ph
speed whenvo50 becomes a negative energy wave wh
the phase speed becomes positive, and so the onset of i
bility of the slow surface mode also corresponds to the c
lescence of a negative energy wave with a positive ene
wave.

Southwood12 showed that the points of marginal stabili
for the shear flow discontinuity of an unbounded magne
sphere~with both magnetic field and plasma pressure on b
sides of the boundary! are given where both

R1~x1!52R2~x2! ~84!

and

j1

dR1

dx1
5j2

dR2

dx2
~85!

are satisfied. Herex1 andx2 are the phase speeds in the re
frames of the two fluids~each normalized to the Alfve´n

of

FIG. 20. A summary of the properties of the slow cavity modes.
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FIG. 21. A summary of the properties of the fast cavi
modes.
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speed of that fluid! and R1 and R2 are the dispersion rela
tions for each side of the boundary.j1 is defined such that

j j5
v i

kva j
, ~86!

where j 51,2. We can show, by replacing Southwood’s no
malizations with ours, that these conditions are equivalen
our conditions for the onset of instability, given in Eq.~77!.

VII. DISCUSSION AND CONCLUSIONS

In comparison with wave guide mode models~e.g.,
Wright25!, which assume a perfectly reflecting magne
pause, we have looked at the trapping and excitation of c
ity modes when the magnetopause is taken to be a
boundary. We have found that whether the magnetosph
cavity traps or excites modes is highly dependent on
value ofvo ~the speed of the flow in the magnetosheath!. The
flow around the magnetopause has a stagnation point a
nose of the magnetosphere and then accelerates approa
the speed of the upstream solar wind flow along the fla
~see Spreiter and Stahara26!. Our model has shown that fo
low flow speeds the cavity modes are leaky, for moder
flows they become trapped and for high flow speeds t
become unstable and energy from the magnetosheath flo
fed into the magnetosphere, increasing the amplitude of
body modes. More specifically, the trapping of fast cav
Downloaded 04 Jul 2007 to 138.251.201.127. Redistribution subject to AIP
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modes occurs for values of the flow speed such t
vo sina.cf2cs2, while slow cavity modes are trapped whe
vo sina.cslow2cs2. Excitation of fast and slow cavity
modes occurs whenvo sina.cf1cs2 andvo sina.cT1cs2,
respectively. The form of the flow around the magnetosph
is such that modes are most likely to be trapped or excited
the flanks and it is in this region that Pc5 oscillations a
observed to be present almost continuously. On the flank
has also been observed that there is a strong correlation
tween Pc5 wave power and the speed of the solar wind fl
~and hence the speed of the flow along the flanks!.

Although slow cavity modes may be trapped even
conditions of zero flow~e.g., whena5p/4! and excited for
small values ofvo , the growth rates of these modes are thr
orders of magnitude smaller than the growth rates of both
fast body and surface modes~when they display wave num
ber selection!. Also, the maximum growth rate of the slow
cavity modes occurs for values ofvo close to the onset o
instability. Hence we can conclude that slow cavity mod
are unlikely to be excited to a sufficient amplitude to
easily observed.

Since the trapping of fast cavity modes occurs forvo

.(cf2cs2)/sina and these modes are excited forvo.(cf

1cs2)/sina, we can see that fast cavity modes will be mo
easily trapped or excited for values ofa close top/2 ~i.e.,
those modes propagating parallel or quasiparallel to the fl
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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in the magnetosheath!. Using some typical values for th
various parameters we getva1'4002500 and cs2'120
km/s ~see Fujitaet al.,17 and also Mannet al.18!, we find that
quasiparallel propagating fast cavity modes will be trapp
for solar wind speeds ofvsw.3002400, and excited when
vsw.5002600 km/s. This is in excellent agreement wi
Engebretsonet al.,1 who observed that Pc5 waves on t
dawn flank have a much increased power index forvsw

.500 km/s. Fast cavity modes propagating obliquely to
magnetosheath flow will need significantly higher flo
speeds to be excited or even trapped. Thus, observable
waves on the magnetospheric flanks may be expecte
propagate quasiparallel to the flow in the magnetoshe
The almost continuous observation of Pc5 oscillations m
be explained by the fact that wave trapping will occur f
normal solar wind conditions.

Above the threshold speed for instability of fast cav
modes we have found negative energy waves. These s
tions represent modes that propagate in the nega
y-direction ~i.e., sunward! when there is no flow. The onse
of instability of the fast modes is found to occur when t
dispersion curves of positive and negative energy wa
meet, and at this point the wave energy is zero.

The behavior of the slow cavity modes is summarized
flow chart form in Fig. 20. The slow cavity modes are fir
unstable for lowk, as that is where they have lower pha
speed, whereas the phase speed of the fast cavity mode~the
properties of which are summarized in Fig. 21! decreases
with increasingk, and so these modes are first unstable
high k. The criterion for the onset of instability for fast cavit
modes changes for highk @defined by Eq.~80!# to occurring
wherevph5vo sina2cs2. For any given value ofa, all the
fast cavity modes will be unstable for higher values ofk once
vo sina.cf1cs2.

Fujita et al.17 found that the fast surface mode displa
azimuthal wave number selection~a maximum value ofv i

for a finite value ofk! for flow speeds above a threshold a

FIG. 22. A summary of the properties of the slow surface modes.
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claimed this was a result of their nonuniform magnetosphe
We have shown that this behavior is also true for the cas
a uniform magnetosphere and that the fast and slow ca
modes also display wave number selection.

Fast and slow surface modes also exist in the magn
sphere. The behavior of the slow surface modes is sum
rized in Fig. 22. The slow surface modes become unsta
for relatively low flow speeds; however, they restabilize a
become fast surface modes for higher flow speeds. The u
of these surface modes coalesces with the original fast
face mode and becomes unstable. The growth rate of th
modes is unbounded ask increases. The onset of instabilit
of the fast surface modes occurs for decreasingvo as a in-
creases and is almost independent ofk; when stable, these
are fast surface modes decaying away from both sides o
magnetospheric boundary. For low flow speeds the unst
modes are predominantly evanescent in the magnetosp
but for speeds abovevo sina*cf1cs2 the modes become
globally oscillatory in the magnetosphere and display wa
number selection. The behavior of the fast surface mode
summarized in Fig. 23.

Using a free boundary allows the generation of quar
wavelength modes within the magnetospheric cavity. Thi
a feature not found in the traditional cavity mode models a
may explain the lowest observed frequencies found in ob
vations.

Nonlinear effects have been shown to be important
the evolution of unstable surface modes at the magnetop
both through observations and numerical simulations.14,27

However, unstable body/wave guide modes have only
cently received attention and have proved elusive in
data.28,29We have considered the linear evolution of unsta
modes in order to classify the criteria for the onset of ins
bility and to compare the relative sizes of linear growth ra
for the various types of modes. Nonlinear simulations of
growth of these modes would help to clarify their evolutio

FIG. 23. A summary of the properties of the fast surface modes.
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