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Ultralow frequency(ULF) waves in the magnetosphere are thought to be driven by disturbances of
the magnetopause caused by the flow in the magnetosheath. In this paper a model showing how the
trapping and excitation of these modes depends upon the shear flow and propagation angle is
presented. The ideal magnetohydrodynanil$iD) equations are used and the perturbations are
assumed to be linear. A bounded, uniform magnetospheric cavity, with a finite plasma beta,
separated by a vortex sheet from a semi-infinite, field-free, flowing magnetosheath is considered. It
is shown that the bounded model allows the trapping and excitation of both fast and slow cavity
modes, and that unstable surface modes may also exist. Slow surface modes are unstable only for
a small interval of flow speed, becoming fast surface modes for higher flows. Slow cavity modes
have small growth rates and are unlikely to be significant observationally. It is shown that fast
modes propagating quasiparallel to the flow may be excited for realistic flow speeds, but that for
nonparallel modes, much higher flows are required. Finally, an exact method for predicting the onset
of instability for fast modes is derived and is shown to occur at the coalescence of modes of opposite
energy. ©1999 American Institute of Physids$1070-664X%99)01510-4

I. INTRODUCTION lower cutoff speed and an upper cutoff speed, with the
) ) modes being stable below and above these speeds, respec-
In this paper we present a model for the trapping andjyely. The lower cutoff speed is due to the stabilizing effect
excnapon of_ osgllaﬂons in the magnetosphere by the shegg he magnetic tension and, when the propagation of the
flow discontinuity across the magnetopause. wave is along the flow, is determined by the Alfvepeed
_ ULF oscillations with periods of 150-600(BcS pulsa- 40 ated using the component of the magnetic field along
tions) are almost continuously observed in the magnetoine fiont4 The upper cutoff speed corresponds to the change

. % wave form in either(or both of the media from evanes-
lated to the speed of the upstream solar windjth a cent (“surface” modes to oscillatory (“cavity,” “wave-

Zgglﬂrcna;gt increase in amplitude for solar wind speeds abovauide,, or “body” modes). The oscillatory modes carry en-

The source of energy for these modes has been Su%rgy away from the boundary stabilizing the KHI. An
gested to be the Kelvin-Helmholtz instabilit)KHI) at the compressible plasma cannot support these propagating

magnetopause driving field line resonan¢e&Rs) within modes and so has no upper cutoff spegd.

the magnetosphefe? Later it was suggested that the FLRs . Models_o_f unstable surface modes in an unbount_:led me-
could be driven by global standing waves rather than Kelvindium containing a vortex sheet show an unbounded increase
Helmholtz (KH) surface waves. Cavity mode thedr pro- of the growth rate the wave numb'er. a_nd the model b_reaks
duces a structure of frequencies determined by the natur&CWn as the wavelengths become infinitely small. Studies of
frequencies of the cavity. Almost all models of cavity modestnStable surf?ce modes with & boundary layer of finite thick-
in the magnetosphere have assumed the magnetopau’é%ss(walkell and Miura and Pritchef) show that the sur-
boundary to be rigid so that the effect of flow in the magne-face wave now has a maximum growth rate for a finite wave
tosheath is neglected, and the excitation of the modes is némber, with the growth rate approaching zero as the wave
normally addressed. Indeed, the question of whether or ndtumber—, and the upper cutoff speed is removed so that
cavity modes may even be trapped in the magnetosphere hii¥ modes are unstable for all flow speeds above the lower
also been little studied. cutoff (e.g., Miurd?).

That the KHI may occur at the magnetopause has been Fujita et al. (1996 considered a bounded nonuniform
known for over 40 yearse.g., Dunge). The first work on ~magnetosphere adjoining a flowing magnetosheath with a
the KHI in a magnetized plasma considered the stability of &ree magnetopause boundary. They used the boundary con-
system of unbounded incompressible plasmas either side ofdition in the magnetosheath that the amplitude of any pertur-
shear flow discontinuitye.g., Chandrasektar The addition ~ bations must decay in space away from the magnetopause.
of compressibility to the unbounded KHI model.g., Sert®  They found that for large flow speeds the growth rate has a
Fejer!! Southwood> Pu and Kivelsol) has a significant maximum with respect to the wave number indicating a pre-
effect on the KHI. These papers showed that there is both terred wavelength for the oscillations. The growth rate of
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y / “leaky” cavity/wave guide modes resulting from partial re-

=0 flection and transmission of the magnetospheric waves at the
magnetopause. The cavity modes were shown to become
O B.. » magnetosphere trapped for moderate flow speeds, which corresponds to the

=11 total internal reflection of the magnetospheric waves by a
=0 p, P,%0 perfectly reflecting magnetopause. The modes become un-

r=d magnetopause stable or “over-reflected” for high flow speeds. In the case
—v, ¥y of over-reflected modes, energy from the magnetosheath

flow is fed into the oscillations in the magnetosphere, in-
creasing their amplitude.
In this paper we consider a model similar to that of
FIG. 1. A schematic representation of our bounded magnetosphere modelMann et al,*® however, we include finite plasma pressure in
the magnetosphere and also consider modes propagating in
an arbitrary direction. This allows us to study both fast and
these modes approaches zero as the wave number becons®w magnetoacoustic waves in the magnetosphere. We find
larger. They also showed that, although the growth rate stilthat the onset of instability for all modes depends strongly
has a maximum with respect to the flow speed, it now tendsipon the angle between the magnetic field and the wave
to zero only as the flow tends to infinity. This is in contrast tovector(and hence the angle between the wave vector and the
the unbounded modes containing a vortex sheet whos@agnetosheath flonand show that the wave number selec-
growth rate has a maximum, and then, above the upper cution found by Fujitaet all” occurs for modes at all angles in
off speed, is identically zero. In other words, a bounded nona uniform magnetosphere model.
uniform magnetosphere has no upper cutoff speed. Physi- In analyzing the modes that we find in our model we
cally, this corresponds to the fact that the energy can nemploy the concept of negative energy wavese Cairns?
longer simply propagate away from the magnetopause on thdcKenzie?® and also Joardest al*). We show that modes
magnetosphere side as the waves are reflected by the inngith group velocity directed away from the magnetopause in
boundary. Fujitaet all’ attributed these new properties to the moving frame of the magnetosheath may still feed energy
the nonuniform nature of the magnetosphere. They alsfrom the magnetosheath into the magnetosphere. We find
looked at the solution of the dispersion relation for nonzerdhat the onset of instability of both fast cavity/wave guide
wave number perpendicular to the flow. They found that thisand surface modes may be understood in terms of the coa-
gave rise to an enhancement in the frequencies found arlédscence of a positive energy mode with a negative energy
that there was a cutoff flow-aligned wave number belowmode.
which the modes were stable. The structure of this paper is as follows: Sec. Il presents
Mannet al8 considered a similar model to that of Fujita our model, Sec. Il gives the governing equations and dis-
et al,}” specifically a bounded uniform magnetosphere withcusses the boundary conditions, Sec. IV presents the con-
zero plasma pressure connected to a field-free uniform flonsepts of wave energy and over-reflection and Sec. V dis-
ing magnetosheath by a free sheet magnetopéaseour cusses the results. In Sec. VI we derive a method for
model shown in Fig. 1 witiP;=0 andB=0). They showed predicting the onset of instability for some of the modes, and
that the same properties found by Fujiaall’ were also  Sec. VII compares our results to observations and summa-
found in a uniform magnetosphere and thus it is the fact thatizes our findings.
the magnetosphere is boundédhather than nonuniforin
which has the most significant effect on the behavior of un-
stable surface modes at the magnetopause. Because of thgin,opeL
model geometry, Manret al'® found that the fast surface
mode is unstable for all nonzero flow spedt®e lower cut- We have used the ideal magnetohydrodynatMé¢iD)
off speed is reduced to zerarhis is because the stabilizing equations to consider a model for the modes generated in the
force of the magnetic tension is absent since the wave propanagnetosphere by the flow discontinuity across the magne-
gation does not bend the magnetic field. Maziral!® used  topause.
an outgoing boundary condition in the magnetosheath that Our model consists of a bounded, uniform magneto-
the group velocity of the waves there should be directedsphere separated from an unbounded magnetosheath by a
away from the magnetopause in the flowing frame of thefree magnetopause, which we assume to be infinitely thin.
magnetosheath. This replaces the condition of Fejital!”  Figure 1 is a schematic diagram of our model. The magneto-
that the modes should decay in amplitude away from thesphere is permeated by a constant magnetic fi&g,
magnetopause. Besides the Maenal!® condition being =(0,0B;,), which is tangential to the discontinuity, and has
more realistic than that of Fujitet all’, it also allowed them a finite pressure R,) and density f,,). It has an inner
to identify more complex behavior of the normal modes. Inboundary which is taken to be perfectly reflecting, represent-
particular, this condition enabled Mamn al*® to find cavity  ing the refraction of MHD modes by the increasing Alfve
modes that decay in time and grow spatially in the magnespeed closer to the Earth. The inner boundary is taken to be
tosheath for low flow speeds. These modes carry energgt x=0 and the equilibrium magnetopause isxatd. The
from the magnetosphere to the magnetosheath. They amagnetosheath is taken to be field-free with constant equilib-

B,=0 p, P,#0 magnetosheath
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rium pressureP,) and density f,,). The magnetosheath is
flowing in the y-direction with a constant speediy. =
In order for this model to be in equilibrium we require
total pressure balance across the magnetopause, given by &
B2 Yo
2u =Ps. @ - . . S
0 FIG. 2. A schematic diagram showing the relative directionsBgf the

. . . agnetic field in the magnetospheke,andv,, the magnetosheath velocity,
Here, and throughout th|s_ paper, any qugntlty suff_lxed by a j;: they— 2z plane. °
defines a magnetospheric quantity, while a suffix 2 repre-
sents quantities in the magnetosheath. By choosing the ratio
of the densities in the two regions<€p,1/py2) and the
plasma betdB) in the magnetosphere we can now derive a k=kyéy+ kzézv (10)
formula for the sound and Alfve speeds in the magneto-
sphere in terms of the sound speed in the magnetosheathnd

The sound speed in the magnetosphere is given by

k= kZ+KZ. (11)
2 B 2

Ca1= e(1+p) Cs2: 2 we also define the angle between the tangential wave vector
and the magnetospheric magnetic field in yhez plane as

leu)
=~

P, +

and the Alfven speed by
> %k.81> 12
2 _ 2 a=arcco$-——|.
Va1= 76(1+B) CSZ' (3) kBj_
The relative directions df, v, andB, are illustrated in Fig.
2.
ll. EQUATIONS We will be analyzing both the stable and unstable behav-
ior of the system and so will assume thatis a complex
number = w, +iw;). Thus,w, is considered to be the fre-
rium sound speedc.,, and density,n,,, in the magneto- quency an_dwi_is the growth(or decay rate of the amplitude
sheath.(Gas pressure s normalized by the quantiys, o thTehZS;;(I)Itl‘::llltlOpan.ssure perturbation in the magnetosphere
magnetic fields byyyP,u, and time byd/cg,.) Then we )
have added a small pZerIieration to each séf Gronstank (PT: plTLBlblz) can be shown to satisfy the second order
equilibrium quantities and linearized the ideal MHD equa_d|fferent|al equation
tions for a uniform medium, to give

We have normalized the ideal MHD equations with re-
spect to the depth of the magnetosphekeand the equilib-

deT 2
d \Y) 2 +m1pT:0’ (13)
po| 3¢ Vo ¥ U= = Z(P+YB.D)+(BV)b, (4) dx
5 where
E +VO.V p=p0V.u, (5) ) (w2_ k2C$)(w2_ kzcglow)
m=—"> 2 2_ 122 (14)
V.b=0, (6) (Cf+Cgow (@“—k“CT)
9 and m, is the wave number in thg-direction in the mag-
E"'Vo-v b=(B.V)u—=B(V.u), (7)  netosphere. Whea=0, Eqs.(13) and(14) are equivalent to
the equation for the motion of waves in a magnetic slab
and found by Robert$? however, it should be noted that in that
J g paper, the wave equation is written @8pt/dx?>—mapr
VoV p=c2 VeV |p. (8 =0, where the wave number is defined m&=—m3(«

=0). Herec; andcgy,, are the fast and slow magnetoacous-
Here,v,, B, P andp, are the normalized equilibrium flow tic speeds defined by

speed, magnetic field, pressure and density, respectively,
while u, b, p andp are the perturbations to these quantities, o2 :E((Vz +c2)+/
respectively. The coefficients of the perturbed quantities in fislow 2 31 a1 = sl
these equations are now independert; gfandz, so we may

7 2 7 2
look for solutions of the form —(va+es)?—4vics, cos ), (15
u(x,y,z,t)=u(x)expi(kyy+k,z— wt). (9)  respectively, andt is given by
Since the equations are normalized, the frequencynd the 2.2 2 2
. f 2 CtCslow VaiCs1
wave numbersk, andk,, are variables of the normalized =% = cog «a (16)
system. We define the tangential wave veckgrsuch that Ci+Coow VarTCa
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Whena=0, ct is the tube speed for a magnetic slab defined = We now assume that,(x) and the other equilibrium
by Roberts’? and soct may be thought of as the component quantities are step functions at the magnetopause, and inte-
of the tube speed along the propagation vektorhese three grate Eqs(22) and(23) over the regiof1— 48,1+ §]. Taking

characteristic speeds satisfy the ordering the limit as 6—0, we find that the quantitiepr and
5 9 5 u,/(w—Kkv, sin @) must be continuous at the magnetopause.
CT=Cslow=Ct - 17 Hence, our matching conditions across the magnetopause are
The perturbed pressure in the magnetoshepjh $atis- pr(x=1)=py(x=1), (25)
fies the equation
and
d°p, +m2p,=0. (18) Uy (X=1) Ug(x=1)
dx? = : (26)

w w'

Herem, is thex-component of the wave number in the mag-

netosheath given by Equation(25) corresponds to the continuity of total pressure

across the magnetopause and E§) implies that the dis-

o k32 placement of the magnetopause is the same for both media
s2 . C . .
my=————. (19 (so that there is no cavitatipnThese are the quantities that
Cs2 we would expect to be conserved at a discontinuous

12,20 - _
We have defined’ as the Doppler shifted frequency of the boundary? ““"We require the boundary a=0 to be to-
oscillations in the rest frame of the magnetosheath and it i&lly reflecting, which may be imposed by the constraint

related tow by Uy (x=0)=0. (27)
o' =w—kv, sina. (200 Equation(22) then implies the condition

By assuming the equilibrium quantities are functions of  dpy
x rather than constants we can obtain two first order ordinary W(XZO):O- (28)
differential equations which will enable us to specify the . .
matching conditions across the magnetopavse1( in our Finally, we require thec-component of the group velocity of
normalized systein We must now retain terms in our gov- the perturbations in the rest frame of the magnetosheath to be
erning equations that are concerned with the gradients of olfirected away from the magnetopause. Because com-

equilibrium quantities. For example, the linearized momen1€X, the wave numbers will also be complex. In this condi-
tum equation now becomes tion, therefore, we consider only the real part of the group

velocity in thex-direction and require it to be positive in the

d vV Ut (uv rest frame of the magnetosheath. The dispersion relation for
Pol | g TVeV U (U.V)Vo sound waves in the rest frame of the magnetosheath is
==V(protpr)+(B.V)b+(b.V)B, (2D) 0 ?=(m3+k*)ck, (29

wherepr,=p,+ B?/2, and our other equations are similarly where in the rest frame of the magnetosheath the waves os-
modified. The equations are cillate with frequencyw’. The component of the group ve-
locity of these waves in the-direction is given by

d pT . k . 2 k2 2
W—lpo(x)[(w— Vo(X)sin a)“—Kkvg,(X) do'  m, , Re(m,)+ilm(my) ,
vgx=§?=—,csz= — —Cg- (30
u, 2 Rew')+ilm(w')
X cos a](w—kvo(x)sin a)’ (22) The real part of this component of the group velocity is
d u Re(w")Re(My) +IM(w’)IM(m,)
el X Re(Vg,) = e — c%. (3D
dx | (w—Kkvy(Xx)sin a) Rew')*+Im(w’)
im2(x) The condition that the real part of the group velocity in the
= > 5 Pt x-direction is positive in the rest frame of the magnetosheath
Po(X)((®—Kkv(X)sina)?—k?vz(x)cosa) then becomes
(23 Re(w’)REM,) +Im(w')Im(my)=0. (32)
where It can be shown that when this condition is satisfied the real
, ((@—Kkvo(X)sin a)z—kchZ(X)) part of/ the x—gomponent o.f. the phase spged, Rﬁ(() '
m-(x) = > 5 =Re(w'/(m,))is always positive. Therefore this condition is
(CF(X) + Cionl X)) equivalent to requiring that the phase speed in the magneto-
((0—kvg(X)sin a)2— k2C§|ow(X)) shea_th rest frame is direc_'_[ed awzi%/ from the mfignetopause. In
— _ (24)  previous modelge.g., Fujitaet al.™) the condition that the
((w—kvo(X)sin @)=k c(X)) amplitude of the observations decreasescas» has been
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used, which in our model would involve the condition that V. THE THEORY OF NEGATIVE ENERGY WAVES
Im(m,)>0. The more general condition that we have used

here allows us to find modes which decay in time and have a AN important quantity in understanding the behavior of
spatially growing nature in the magnetosheatieaky the instability at the magnetopause is the energy of the wave.

modes. We find that for low flows, most modes with posi- Cairng® showed that the energy per unit area of a stable

tive phase speed in the magnetosheath are in fact leaky. fiydrodynamic wave is given by
the case of stable modes;(=0), however, the wave num- 1 D
ber in the magnetosheath is purely imaginary, and so we E= 29 ﬁ—Aﬁ, (35

2 . op
have the condition that the modes must be evanescent, which
in this special case gives our “outgoing” condition in the whereD is the dispersion relation of the waves afglis the
magnetosheath as amplitude of the displacement of the fluid.

We now show how this result is extended to magneto-
hydrodynamics(see also Joardeet al?}). When the dis-
Im(mjy)>0. (33)  placement of the magnetopause is given by

n=A, expi(kyy+k,z—ot), (36)

Combining the solutions to the wave equati¢h8) and  whereA, is the amplitude of the oscillation, the linearized
(18) with the various boundary conditions yields the disper-ideal MHD equations yield

sion relation
pr(Xx=1)=D;(w,k) 7 37
and
2_1,2,,2 2 . o o
o[ T S8 [OXIMyFOHTIM))_0 _, p2(x=1)=Da(w,K)7. (38)
m; explim;)—exp(—imy)/ m,

(34  We have defined

— vyp1(0?—k??2, cod a)cosm
| o Dy(wk)= — 2 o L @9
Whena=0, in the absence of flow, and considering only real my

w, this dispersion relation reduces to that in Rob&rt§he and
boundary condition ak=0 in our model without flow is
equivalent to a sausage mode boundary condition in the cen- — yp,o 2sinm;
ter of the slab considered by Roberts, and so our model will Da(w,k)= T
yield only half the modes found in that paper. The other class ] ) . .
of modes(kink modes could be generated by replacing Egs. Then, the wprk done per'unlt area in setting up the wave is
(27) and (28) with the condition p(x=0)=du,, /dx(x found to satisfy Eq(35) with D defined so that
=0)=0. Depending upon the sign m'ﬁ (i.e., by consider- D=+(D;~D,). (41)
ing whethemn, is real or imaginary, this equation describes ) ] )
both the body and surface modes found by Roberts. AllowThe sign ofD is chosen such that the energy of the wave is
ing  to be complex means that this dispersion relation de@lways positive when there is no flow in the system.
scribes not only purely oscillatory or evanescent modes, but ~ BY 100king at the sign of
also modes that have both oscillations and a background 9D
growth or decay irx. C=w, o (42

We have used a two-dimensional Newton-Raphson r
code, adapted from that in Ref. 23 to solve the dispersionve are able to classify waves as having either positive or
relation numerically, yielding the complex eigenvaluefor ~ negative energy. The presence of a negative energy wave
a given set of parametefls, « andv,). In order to maximize will reduce the energy of the system in the frame of refer-
the efficiency of the code we have incorporated a backence being considered.
stepping routine to check that each iteration decreases the Cairng® showed that this expression for the energy of a
magnitude of the complex dispersion relation. The results omode can be used to explain the onset of some instabilities.
the code have been checkéd taking the appropriate lim- In particular, he showed that the Kelvin-Helmholtz instabil-
its) qualitatively against the results in Robéftand Nakari- ity occurs when a positive energy wave “coalesces” with a
akov and Robert&! and quantitatively against the results negative energy wave, a result that we will apply later. The
from Mannet al*® We found that our code agreed with that idea of the waves coalescing is used to describe the fact that
of Mannet al*® to at least 1 part in 10 The code finds the the onset of instability occurs when the solutions for the two
roots (w=w,+iw;) such that the absolute value of both the waves with opposite energy converge to the same value. Af-
real and imaginary parts of the dispersion relation and theer this point the waves are unstable and the boundary con-
calculated increment in the real and imaginary parts of thalitions will select only one of the complex roots, so the
frequency are less than the value®fin all casess<10 8, positive and negative energy modes are seen to “merge”
and in most cases, it is three or four orders of magnitudénto the same unstable solution. This type of instability is
smaller. also classed as a reactive instability.

(40)
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V. RESULTS To include the effects of the magnetosphere and in order
to classify our stable modes we need to examine the sign of
m3 when w;=0, see Robert& We find that form<0 we

We first examine the results that can be obtained using Bave evanescent modes in the magnetospf(emface
purely real frequency ¢=w,). With real w, the sound modeg and form?>0 we have modes that oscillate within
waves in the magnetosheath satisfy the dispersion relationthe magnetospheric cavitybody, cavity or wave guide
(43) mode$. The modes are then subdivided into fast and slow

modes depending upon their nature in the magnetosphere.

which implies thatm3 is real. Thusm, is either purely real This distinction is also manifested in the phase speed of the
(m§> 0), implying propagating solutions in the magneto- modes. Modes witlv ,p<Cg0,, are classified as slow modes,
sheath, or purely imaginaryn<0), which gives evanes- whereas those Withp,™> Cg0, are fast modes. From Eqd.4)
cent solutions in the magnetosheath. Similar‘ry}, [as de- to (17), we find that slow surface modes may exist for
fined in Eq.(14)], is also real whem;=0, and hencen; is

A. Existence and classification of stable modes

(0, — kv, sin a)?=(m5+k?)cZ,,

either purely real or imaginary. In the case wheng is O<vpn<cr, (48)
purely real, the dispersion relati¢kq. (34)] becomes wherev, is the phase speed of the modg,f= o, /k), and
5( wrz—kzvil coL a)COt . w_rfzzo w slow body modes may occur for
im, Y'm, 7 CT<V pn< Cslow- (49
and, whemm; is purely imaginary, Eq(34) becomes Fast surface modes are found to exist where
6( w?— kzygl cog a) cothn + w? _o. 45 Cslow<Vph<Ct, (50)
ing m,

and fast cavity modes exist where

where we have definegh; =in,. In both cases the first term
of the equation is imaginary and, ih, is real the second
term is real. Hence, we can see that both the first and secorking v,=0 and lettingk— o, we find that the dispersion
terms(the real and imaginary parts of the equajionust be  relation for surface modd4q. (45)] becomes
identically zero for the equations to be satisfied. This can 2 12 2 )2

. . w’—ki, cof a o
only be true for specific values of, and so, in general, there e—' al +— =0, (52)
is no solution to the dispersion relation fiwg>0 (realm,). ny Ny
If m, is imaginary, then the two terms may balance each/vherenz

other and need not be zero individually. ) can solve this equation to find the asymptotic value of the
Thus solutions for real> may only occur whem; <0 hhase speed for the surface modes. We find that, when there

(i.e., m, is imaginary, and the modes must decay exponen-is g flow in the magnetosheath, only slow surface modes
tially away from the magnetopause in the magnetosheatn.nay propagate for=0 (when e=0.192 andB=0.5 these

Thus, any oscillatory part of the mode is trapped or conynges haves,=0.700). We will see later that in this case
tained within the magnetosphere. With this condition, Ed5st surface r[;]odes may only propagate as a result of a non-
(43) may be rearranged to give zero flow. So now, combining the above criteria with that for
2 the existence of stable modgsq. (47)], our full criteria for
<ck. (46)  stable slow surface modes is that they may exist for phase
speeds in the range

Vph>cf . (51)

=im,. Assuming that ak—», w,/k—const, we

Wy .
? —Vo SIN
This implies that eitherw, /k—v, sina<cy, oOr v, Sina

— w, Ik<Cs, Which together give the restriction on the phaseM@X0Vo SiN a@—Ce) <Vpp<min(cr v, sin a+Cs),  (53)

speed for a stable mode: where v, must satisfyv, sina—cy<cr so that the above
® inequality may be satisfied. Similarly, stable fast surface
Vo Sin a—csz<?r<v0 sina+cCg,. (477  modes may exist for phase speeds such that

With a=/2 this condition reduces to that of Maenal 81t~ M@ Csiow:Vo SIN @ = Ce) <Vph=min(Cy,vo sin a+c52)(’54)
is important to note that while this is a necessary condition

for the existence of stable modes, it is not a sufficient onewhenv, is in the rangegq,— Csp <V, Sin @<C;+Cy. Stable
That is, when a nonzero growth rate is included, it is still trueslow body modes may exist for

that stable modes may only exist within the given range of : . .
phase speed; however, there may also exist unstable mod@EX(CT Vo SN &= Ce) <Vpr=MIN(Cgiow, Vo SIN a+052)(,55)
within that range. This condition is not a sufficient condition
because it takes into account only the dispersion relation fowherev, sin a—c,<Cyo,. Finally, stable fast cavity modes
sound waves in the magnetoshefy. (43)]. The total dis- may exist for

persion relatiof Eq. (34)] also takes into account the condi-
tions in the magnetosphere, and this will further restrict the
region in which stable modes may occur. wherev, sin a+Ccyo>C;.

Max(Cs,V, SiN @—Cgy) <Vpr<V, SiN a+Cqp, (56)
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a/m FIG. 4. Fast surface mod@) phase velocities an¢h) growth rates as a
o ] ) ) ] function of k for a=#/2. Here we have plots fov,= 1.0 (solid line), v,
FIG. 3. The variation of the regions of phase spégidlen in units ofcg,) =2.0 (dotted ling, v,=3.0 (dashed ling v,=4.0 (dot-dashed lineand

where different mode types may exist with propagation angl€f the =50 (triple dot-dashed line The magnetospheric fast speec)( is
dotted linesa is the magnetosheath sound speeg)( b is the tube speed  shown in(a) by a horizontal dashed line.

[ct(a=0)] in the magnetosphere whern=0, c is the sound speed in the
magnetospherec(;) andd is the Alfven speed in the magnetospherg ).
Of the solid curvesg is the lower cutoff for stable modew f,=v, sina

—Cy) andfis the corresponding upper cutoff ;=v, sina+cy), whilethe  necessary condition, not a sufficient one. Thus we should

curves of the fast speed;, slow speedcy., and tube speed;; are ey . _
indicated by the arrows. Here as in all the following diagrags0.5, remember that we may have unstable modes within this re

y=5/3 ande=0.192, and in this case we have takey4.0. gion also. However, the behavior of the slgshown in Fig.
8) and fast stable body modes when, sina—cy

<cr and ¢, respectively, is that the phase speed is con-
Ened between the upper and lower boundaries. For the slow
ody modes, the phase speed asymptotes toward the tube
speed ak—0, whereas the phase speed of the fast mode
asymptotes toward the fast speedkas. Thus, the phase

case we have takem,=4.0. The negative sloping shading d of th d ins in th : h bl q
shows regions where the magnetosphere can support a bogheed Of the mode remains |th € region where sta_ € modes
ay propagate even when, sin a—cy, becomes arbitrarily

mode (m§>0). The unshaded regions show the values o .
phase speed for which the magnetosphere may support as&l_ps? tocy or ¢, and so the phase speed a!ways remains
face mode fn?<0). The boundaries are calculated using within the bounds and the modes may remain stable. Thus
¢; andcy, as outlined abovgEgs. (48) to (51)]. The region the slow body modes may become unstable only when
with positive sloping shading is the region of phase speed v, sin a—cg>cy, (57
within which the magnetosheath may support stahlg (
=0) modes, which are not growing or decaying in tifaej.
(47)]. All of the modes can be divided into fast and slow
modes by the linevy,=cgoy, above which fast modes Vo SiN @—Cgp>Cs. (58
propagate and below which slow modes may propagate. Aﬁ
a increases, the regions where slow modes may exist dimin-
ish, until when a==/2 only fast modes may propagate. First we will examine the behavior of the fast surface
Where the region within which stable modes may propagatenode with changind. Figure 4 shows the phase speed and
(positive sloped shading between e anpa¥erlaps with the growth rate of the mode for various flow speeds, Here
unshaded regions, the conditions for purely evanescente have takem=m/2. We can see that for all nonzero flow
modes in both the magnetosheath and the magnetosphere apeeds, both the phase speed and the growth rate tend to zero
both satisfied and we may find stable surface modes. Thessk— 0. With a=7/2 we can see that the mode is unstable
are the regions defined by Eq83) and(54). Similarly, the  for all k. For low flow speeds, we find that the phase speed is
overlap between the positive and negative sloping indicatalways below the fast speed, and ks>», w;—®. For
the regions for which stable body modes may propagatehigher flow speeds, we find that the phase speed first exceeds
defined in Egs(55) and(56). The effect of changing the flow the fast speed, has a maximum and tends back dowpds
speed is to change the gradient of the outline of the posik increases. Here, the growth rate also has a maximum at a
tively sloping shaded region. Whan=0, the region where finite value ofk, and then tends to zero for large
stable modes may exist is independent of the valug of In order to understand these results better, we now look
and the region moves most rapidly with increasingwhen  at the x-component of the wave numbers in the magneto-
a=ml2. Whena=/2, we effectively have the case studied sphere and magnetosheath,(andm,, respectively. Figure
by Mannet al,*® although they found only fast surface and 5 shows the real and imaginary components of these two
cavity modes as they neglected plasma pressure in the magrave numbers as functions & For the low flow speeds
netosphere. shown in Fig. 4(the cases witlv,<4), the real and imagi-

The condition for stable modd€q. (47)] is merely a nary parts of botim; andm, increase in size linearly with.

Figure 3 shows the dependence of the regions wher
modes may exist on the angte For all the figures in this
paper we have takef=0.5, y=5/3 ande=0.192, and in this

and similarly, the fast body modes may become unstable
when

. The fast surface mode
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In both regions, the imaginary parts of the wave numbershows a contour plot of the growth rate agawmgtand « for
increase more rapidly than the real parts, and for these flowhe fast surface mode witk=2.0. The solid lines indicate
speeds the mode is dominantly evanescent in the magnetpesitive values ofv; , whilst the dotted lines are the negative
sphere. These modes correspond to those in Fig. 4 that havelues. Here, it is obvious that although the mode is unstable
unbounded growth rates(— ) as k—o. For the modes for any nonzerov, when a=/2, there is a nonzero lower
plotted in Fig. 4 which have bounded growth rate,( cutoff speed for all lower values @f. As «— 0, the value of
=4,5), the imaginary parts of botin; andm, are bounded the cutoff tends to infinity, since propagation perpendicular
in k. The real part ofn; approachesr/2 for largek and these to the flow does not “feel” the flow, ¥{,.V)=iv,k—0.
modes are dominantly oscillatory in the magnetosphere. Ahere is also an upper cutoff speed for the existence of leaky
value of /2 for the wave number in the-direction here, modes and this also tends to infinity for smallThe anglex
indicates that these modes have only a quarter of a wavéras two effects on the properties of the model that cause this
length of oscillation across the magnetosphere, whereas trghange in stability. First, the flow speed is always multiplied
ditional cavity models may trap a minimum of half a wave- by a factor of sirnw, and so for small angles, the effect of the
length. These modes display the feature fiRe(m,)|—>  flow is very small. Second, the angle of propagation affects
and Im(m,)—0 ask—o. Thus, for sufficiently high flow the magnetic forces that the background field exert on the
speeds the fast surface modes become oscillatory in the magrave. The tension force isB¢.V)b=i(k.B;)b. Thus when
netosheath also, although they resemble trapped modes in the- /2 (i.e., whenk.B;=0), no magnetic tension force is
magnetosphere. created. Conversely, when the propagation vector has a com-
We now investigate the dependence of the stability ofponent along the field lingi.e., k.B,;#0), the oscillations
the fast surface mode on the parameteysand . Figure 6  will tend to bend the field line, introducing magnetic tension
forces which help to stabilize the system. Thus for a given
flow, decreasingr will decrease the effect of the flow and
introduce stabilizing magnetic tension forces. Fugtaall’
studied the effect of a nonzerk, on the frequency and
growth rate of the oscillations. However, where we have
fixed the value ofk= \/ky2+ kZ and varied the value of the
angleq, Fujitaet al. fixed the value ok, and variedk, . In
a this cas?, increasiny, is equivalent to increasing bothand
—— ' e a=tan “(k,/k). They found that there was a lower cutoff in
000010 0’22/%30 040050 k, below \Ijvyhich the modes are stable. We have looked at the
dependence ok and « separately, and our results indicate
FIG. 6. A contour plot of the growth ratey;, plotted against, anda for  that the stability of the fast surface modes has very little

the fast surface mode witk=2.0. The solid contours show regions of ; _
positive growth rate indicating unstable modes, the dotted lines are in re(-jEpeﬂdence ok (see also Fig. 7 belowbut a strong depen

gions of negative growth rate showing leaky mode. The region containingdence ona. Hence, the lower cutoff irk, fO_L_md by Fujita
no contour lines is the region for which stable surface modes exist. et al.is more clearly expressed as a cutoffaiin our model.
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0.0L i 0 it FIG. 8. The dispersion diagram for slow surface modes wihgnO and
6 2 4 6 8 10 6 2z 4 6 8 10 a=0. Here we have shown both the forward and backward propagating
Yo Yo modes.

FIG. 7. The variation with flow speed,,, of (a) the phase speed, artl)

the growth rate of the fast surface mode kar 2 (solid ling), k=4 (dotted . Si th d | tin th
line) andk= 6(dashed ling Here we have taken==/4. The diamond irfa) Increases. since the moaes are purely evanescent in theé mag-

shows the predicted point of onset of instability whea2 and the triple  Netosphere for low,, they are fairly insensitive to the inner
dot-dashed line in both shows the valueof at this point. The region boundary. Thus there will be negligible dispersitre., k
bounded by the horizontal lines and the diagonal lines is the p°te”“a”ydependenc)eof the stable fast surface modes and the phase
stable regiorfEq. (54)]. .

speeds will be the same for aky

Finally, Fig. 7 shows the evolution of the fast surfacec' Slow surface modes

mode with flow speed for various values &fand with Now we examine the behavior of the slow surface mode.

a=l4. Here we see that the speed at the onset of instabilitfrom Fig. 3 we see that, for all values @fwhenv,=0, the

of these modes has little dependencekpand that while the  region of phase speed for which slow surface modes may

modes are stable, the values of the phase speed are almesist (i.e., v,<Cy), is almost entirely within the region for

independent ok and the phase speed for the unstable modewhich stable modes may exist v{ sina—Co<vy

also has little dependence énWe can understand this by <v, sin a+cy). Figure 8 shows the phase speed of the slow

rearranging the dispersion relation for stable surface modesurface mode as a function kfwhenv,=0 anda=0. For

[Eqg. (45)] in terms of the phase speed,,, so that small k the phase speed approaclgs and ask increases,

2 2 . oy the phase speed rapidly approaches its asymptotic value,

€(Vpn~ Va1 COS' @)Np COtINLK) + (Voo SiN @) *N; =0, which in this case iv,,=0.700. This mode is stable for all
(59 K whi P .

, which we can explain in the same way as we did for fast
whereN;=n; /k and N,=n,/k. Now we can see that the syrface modes. The dispersion relation for evanescent modes
only explicit dependence ok in the dispersion relation is [Eq. (59)] has little dependence dn and so we expect the
within the coth function. Since this function is very close to character of the modes to be independerk_M[e have also
unity for most values ofN;k, the dispersion relation for shown the slow surface wave propagating in the opposite
stable surface modes is almost independerit és we will  djrection, which wherv,=0 is a reflection of the mode with
see in Sec. VI, the onset of instability may be predicted usingositive phase speed in tve,=0 line.
this form of the dispersion relation. Thus, the onset of insta- Figure 9 shows the variation of phase speed with angle,
bility for fast surface modes will be almost independenkof , when v,=0 andk=10. This phase speed will be the

The growth rate of the unstable surface modes at firsphase speed of the slow surface modes for almo&talthat
seems to increase ”nearly wikhand this occurs for Speeds at particu]ara_ AsS o increasesy the phase Speed decreasesy ap-
which the mode has unbounded grOWth ratekascee. For proaching zero alw=m/2. The phase Speed of the mode
higher speeds, the mode has wave number selection and hqjﬁ)pagating backward is simply the negative of that shown
we can see that the growth rate is small forkallThe dis-  in this case. The dot-dashed line shows the value of the tube
continuity in w; occurs at the change over from unbounded
to bounded growth rate. The change in behavior of the

growth rate of the fast surface mode occurs approximately 1207 '_\
where the line/y,=V, sin a—cg crosses the lingy,=c;. In 1.0¢
other words, the growth rate becomes bounded when < 08F B
CitCs 60 \3g 06t \\_
D — - \.
Vo= Gina (60) 0.4
0.2F % ]
which in this casda=m/4) means that the growth rate will 0.0 . . . N
be bounded fow,~4.7. 0.00 0.10 0.20 0.30 0.40 0.50
We can also see that, unlike models of an unbounded a/m

magnEtOSphere with a Sheet[ _magnetOpause’ there is no UPP—%. 9. The variation of phase speed with angle for the slow surface mode
cutoff speed for_the instability, although the growth ratesyheny,=0 andk=10. The dot-dash lines shows the variation of the value
reach has a maximum and then decreases towards zgp asof the tube speed;r, with «.
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01 2 3 4 5 FIG. 12. The phase speésolid line) and growth ratedot-dashed lingof
v v, the unstable slow surface mode whey=3.3 anda=7/6.

FIG. 10. The phase speet® and growth rategb) of slow surface mode as

v, changes. Ina) the dashed line represents the stable fast surface mod%tab|e whe sina~ and has a small bounded growth
and in (b), the dashed line shows the growth rate of the unstable mode h Vo Sina gs'owh ) . h 9 d d
formed by the coalescence of the two stable fast surface modé¢a). tine rate. The upper mode has an increasing phase speed an

dot-dash lines show the upper and lower boundaries of the region wheréventually coalesces with the original stable fast body mode

stable mod_es may exist/g_sin a+cy andv, sin a—cg, respectively, and (that hasvph> Cgow for all v, shown by a dashed line

the dotted lines in ascending order show the tube spredhe slow speed, These modes then become unstable, and the behavior of the

Cqow @nd the fast speed;;. The diamonds mark the predicted points at . . . .

which modes will coalesce. The left and right dotted lineganshow the resulting unstable mode is described in Sec. V B. The pha_se

values ofv, given by Eqs(62) and(63), respectively. speed of the lower stable slow surface mode increases with
the same gradient ag, sin «, so that its phase speed is

Vph= _Vpho+ Vo sin a, (61)

speedct, asa changes. We can see that the phase speed of

the slow surface mode is always belawwhenv,=0. wherev . is the phase speed of the upper slow surface mode

Now we investigate the development of the slow surfacevhenv,=0. The slow surface modes become unstable when

mode asv, increases. Figure 10 shows both the positive andhe phase speed is close to the tube speed,so we can

negative modes as a function of when a=#/6 andk  approximate the flow speed at the onset of instability by

=10. Asv, increases from zero, the phase speeds of both Cr+Vpn

modes increase. As the phase speed of the upper mode ap- v,~ — PF

proaches the tube speed, it flattens. The phase speed of

the lower mode continues to increase, passing through zer&imilarly, the modes become unstable again when the phase

until the phase speeds of the two modes are the same. At thigeed is close to the slow speeg,, and so we can approxi-

point the modes become unstable and our outgoing boundaryate this by

condition [Eq. (32)] selects only one of the two possible

solutions. The phase speed of the unstable mode continues to v~

increase and passes through the region where we would ex-

pect to find slow body modesc{<v,,<cgo,). However, The values of/, predicted by Eqs(62) and(63) are shown

the modes have a significant growth rate and remain domiby the vertical dotted lines in Fig. 10. We can see that while

nantly evanescent in the magnetosph@®ee Fig. 11 The  this is not an accurate way of predicting the onset of insta-

growth rate reaches a maximum and decreases back to zeflity and the point at which the modes restabilize, the values

when the phase speed is just abag,. The modes are are at least reasonably close. The onset of instability can be

now stable fast surface modes, and once again we have twnore accurately predicted, and a method for this is detailed

separate solutions. The phase speed of the lower solutidn Sec. VI.

decreases, tending &y, ast—«. The mode becomes un- Finally, we look at the development of the unstable slow
surface mode wittk. Figure 12 shows the phase speed and
growth rate of the mode when,= 3.3 anda=7/6 (close to

sin o (62)

Cslow™ Vpho

sin o (63

- 15 ' ' the largest growth rate in Fig. LOHere we can see that the
g 10k mmmomme e AN ] phase speed varies little witheven when the mode is un-
o N . ; ;
g . stable; however, the growth rate increases vkitland w;
= st R —o as k—oo, Thus the unstable part of the slow surface
'g R mode has unbounded growth ratekaiscreases in the same
=~ O way as the unstable fast surface mode.
S |
_5 A
0 1 5 3 4 D. Slow body modes
Y, As we saw in Sec. V A, the range of phase speed for

FIG. 11. The real(solid line and imaginary(dashed ling parts of the which slow cavity modes may exist dEpendS_very strongly on
x-direction wave number in the magnetospheng, as a function of, for ~ the Value_ ofa. Where the eﬁeCt of the flow is gre_atest, the
the lower slow surface mode shown in Fig. 10. slow cavity modes are confined to a very small interval of
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[ ' ' ' ' ] very small and the imaginary part of the wave number in the
0.84r ] magnetosphere will remain small compared to the real part,
hence the character of the waves remains dominantly that of
a trapped cavity mode. AE increasesw; also increases,
reaching a maximuniwhich is much lower than the maxi-
mum growth rate for the globally oscillatory modes seen in
Sec. V B and then rapidly decreasing to zero. As the phase
speed crosses the lower cutoff line, the modes become stable
trapped slow cavity modes.

From these results we can see that the slow cavity modes
are never as fast growing as the fast modes or the slow sur-
face mode and hence, we are much less likely to see them
0 2 4 6 8 10 excited to a significant amplitude in the magnetosphere.

FIG. 13. The dispersion diagram showing stable slow cavity modes wherE Fast cavity modes
V,=2 anda=m/4.
We saw in Sec. V A that stable fast cavity modes may

exist whenv, sin a+cy>¢; and they may have phase speeds
phase speed close to zero. In order to examine the modes wgthin the range
fully as possible, we have chosen to look at modes with
a=ml4, where, for our given parameters, the slow cavity
modes are stable when there is no flow. As explained in Sec. V A, the fast cavity modes will only be

As detailed in Sec. V A, the slow cavity modes will only unstable if the lower limit of Eq(56) changedin this case

become unstable when the lower limit in E§5) changes from c; to v, sina—cg). Hence, the fast cavity modes will
from ¢t to v, sin a—Cg, and thus the slow cavity modes can only be unstable if
only be unstable when

Max(Cy,V, SiN @— Cgp) <Vpr<V, SiN a+Cqp. (65)

Ci+Cso
sina

Vo> (66)

CrtCs
sin a

Vo> , (64)

We may write the dispersion relation for stable cavity modes
so in this case the modes will be stable forkalthen there is  [Eq. (44)] as

no flow in the magnetosheath. Figure 13 shows the form of Ny kA2, cod a)

the stable slow cavity modes. tan(m,) =
Next we look at the dispersion diagram for unstable slow my(w—kv, sin a)?
cavity modes. Figure 14 shows the behaviowefk and w;
for v,=2.55 anda=/4. The upper and lower dashed lines _ My(w®— k3, cos @)
mark the slow speed,,, and the tube speed;, respec- B (w—kv, sin a)?
tively. The triple dot-dashed line shows the position of the
lower cutoff for stable slow cavity modes from E(p5), (c2+c2,) (02— K3c?)

which in this case is =V, sin a—Cy. Here we see that the (21 (P — K )’ (67)
form of the phase speed is changed little from the stable case. @ PR slow
For lowk, the phase speed is below the lower stability cutoff,where n,=im,. Using this form of the dispersion relation

and the mode is unstable. The value of the growth rate isnd defining

T T T T 0.0004
0.84 -
Cslow:"""'.'—\.""",',T\""",:-:, """" ]
0.82F -
J FIG. 14. The phase speésblid line and left-hand axjs
S WL i . S o I E and growth ratgdot-dashed lines and right-hand axis
w,/k 080 i 7 0-0002 @, as functions ok for slow cavity modes whem > (¢t

+Cgp)/sina. Herev,=2.55 anda= /4. (The triple dot-

ct: = ; v dashed line is the phase speed cutoff, below which
0.78F ! ¥ / H 1 . modes are unstab)e.
- ! I / i ! E
II //' I // i ll ]
I' ./' | ./ I | p
0.76 F ; e i : i
, Re L I l i .
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(a) () frame of the magnetosheativut once the flow is sufficiently
55T L dusinatey 4T T high, the modes become oscillatory in the magnetosphere
5.0 \ \ / frame. Ask increases, the phase speed of the upper mode
4.5 3 N branch decreases, whilst the phase speed of the lower mode

& 4.0 ] AR branch increases until the two modes meet and coalesce. A
3 35 ;I g2 =y fuller description of this is given in Sec. VI.
2 YySIna—Cyp A TR T For higherk beyond the point of coalescence, the modes
3.0 \\ 1 ] - are unstable. The phase speed decreases and asymptotically
ig SR S i, ol approaches; for largek. The growth rate of the mode is, in

most cases, bounded. The growth rate is of the same order as
that of the unstable fast surface mode and so these modes
will also be easily observed.
FIG. 15. (@) The dispersion diagram for the fast cavity modes in the case ~ However, as with the fast surface mode, the growth rate
o e 1 Soc e o oo i 150l aiays bounded. The fast cavty modes have baunded
goggzelines mark the values &fat thé onset. The upger and Iowér cutoffs growth for lowv,, (above the mm'mum speed for instability
and the fast speed are also shodin). The growth rates as functions kfor However, at the same speed at which the fast surface mode
the modes shown iifa). The dotted lines again show tlievalue of the  becomes globally oscillatory, the fundamental fast cavity
predicted onset of instability. mode starts to have an unbounded growth ratk-ase and
will become dominantly evanescent in the magnetosphere.
Thus the “lowv,” surface and fundamental body mode ex-
change character ag, increases to being predominantly
body and surface modes, respectively. Evidently the distinc-
tion between body and surface modes in a compressible
we see that at the upper end of the range of phase spegghsma is not as clear as in an incompressible one. At some
where stable modes may existy(=Vv, Sina+cy), N2=0  higher flow speed this new surface mode again becomes glo-
and therefore tanfy)=tan(A(vpn)k)=0. Thus the upper cut- pa1y oscillatory and the second harmorii@ther than the
off for stable fast body modes occurs when fundamental fast cavity mode now develops an unbounded
n growth rate, and assumes a surface mode structure. Indeed, it
(69 would appear that for any nonzero flow, there will always be
one mode whose growth rate increases without bounkl as
As k increases, the phase speed of the stable fast cavity,« and is predominantly a surface mode. However, these
modes tends to the fast speed; (see for example modes have large spatial decay in the magnetosphere and so

0 2 4 6 8 10 0 2 4 6 810
k k

2 2 2 2 2
, My (Vph_ Ct )(Vph_ Cslow)

2 2. 2 2 2\’
k (cf+ Cslow)(vph_ CT)

(68)

K= Avo sinatoy)

Robert$?). Whenv,, satisfies are unlikely to be observed within the magnetospheric cav-
Ci—Cg CstCs ity. .
. o - , (70 The development of a fast body mode as a functionof
sin a sin a

is shown in Fig. 16. The mode is leaky for smal| with
(i.e., the flow is fast enough to allow stable cavity modesphase speed greater than that in the region where stable
[Eq. (56)], but not fast enough for those modes to becomeamodes are possible. The mode remains leaky as the flow
unstablg Eq. (66)]), stable fast cavity modes may propagateincreases, even for some of the potentially stable region.
for all k greater than the cutoff defined in E&9). However, farther into the region the mode becomes a stable
In Fig. 15 we show the dispersion diagram for the fastfast cavity mode. Further increasing the flow, the mode be-
cavity modes when the flow speed is fast enough to allow theomes unstable. We again see that the mode is also unstable
modes to become unstaljles defined in Eq(66)]. We have  for some values of/, within the range of potentially stable
usedv,=6.0 anda=/4. As well as the modes that we find phase speed, and we will develop a method for predicting the
whenv,<(c¢+cg)/sina, we find that there are additional onset of the instability in the next sectidiThe discontinuity
modes that begin at the lower cutofigiven by v,, in Im(m,) is because of a branch cutim, in the complex
=V, Sina—Cy) and have phase speed increasingkas-  plane] The ability of the magnetospheric cavity to excite, or
creases. The value &fat the lower extreme of the region in even to trap waves, is strongly dependent on the flow speed
which stable modes may propagate is found by plasing in the magnetosheath.
=V, Sina—Cy in the dispersion relatiofEq. (67)]. Noting
that n, must be zerdfor a stable mode we find that the

value ofk at the cutoff is VI. PREDICTION OF THE ONSET OF INSTABILITY

nr

k= - . (71 We have found that the onset of instability for slow cav-
A(v, Sin @a—Cgp)

ity modes in our model is predicted exactly by the extremes
Physically, these waves correspond to the fast modes thaf the region of phase speed for which stable modes may
exist with negative phase speed whey=0. In the frame of  exist. However, this is not true for either the fast cavity or
the magnetosheath, these modes propagate against the flswrface modes, and we now show how we may predict the
(and at the lower extreme they have phase speeg inthe  exact position of onset of instability for these modes.
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FIG. 16. (a) The phase spegdolid line) and growth ratddot-dashed ling
as functions ofv, for the fundamental fast cavity mode with=3 and
a=/4 (the upper branch in Fig. 15The diamond represents the predicted
point of the onset of the instability, and the dotted line shows/thealue at
this point. The triple-dot-dashed lines show the positions of the upper an

2.0253.03.54.04.55.0

Vpn

2.0253.0354.04.55.0

Vpn

FIG. 17. The form of within the region of phase speed in which stable fast
body modes may exist when,=5 anda=m/4.

S(Vpr) (V5= V3, COS @)

F(vpn) =€ (73

AV o) (Vpn— Vo Sin @)?

m3 ¢~ (Vpn— Vo Sin @)’

k? ¢ ’
andA is as defined in Eq68). As explained in Sec. V A, the
fast cavity modes only become unstablekaso when

SA(Vpn) = — (74)

Cci<V, Sina—Cgy, (75

and, within the stable range given by E47), bothA andS

are real.Sis chosen to be positive to ensure spatial decay in
the magnetosheath, and the sign Afis arbitrary, so we
assume it to be positivéf we took A negative, the disper-
sion relation we are solving would simply becomeDg
=0).

ExaminingF within the region of phase speed for which
stable modes may exi$Eq. (47)] and where Eq(75) is
satisfied, we see that it is singulargf,=v, sin«, and that
F—0 asv,—V, sina*cy (i.e., whereS=0). AlthoughF
=0 whenvy,=Vv,; COSq, this does not occur within the
range of phase speed we are consideringgaosa=<c; for
all . Figure 17 shows the form & within this region when
Vo,=5 and a=mx/4. The function is shown both on a large

@nd small scale to emphasize the behavior at the middle and

lower cutoffs of the region where stable modes may exist. The dashed lineeNd points of the region, respectively. In both plots the dot-

indicate the values of, between which the fast modes are stable fokall
(b) The real(solid line) and imaginary(dot-dashed lineparts of the mag-
netosphere wave number of the mode, dodthe real(solid line and
imaginary(dot-dashed lineparts of the magnetosheath wave number.

A. Fast cavity modes

ted lines represent the end points of the region where stable
modes may occur, and the dot-dashed line represents the
middle of the region wher€ is singular. Figure 18 shows

as a function o/, with the function tan@k) over-plotted in

a dashed line for various values lkafWe see that for lowk,

the dashed line is almost straight, butkamcreases the pe-
riod of the tan function decreases, and the number of cross-

As we have seen from our results, the onset of instabilitynd Points of the two functiongcorresponding to values of

for each fast mode occurs within the region of phase speetiph WhereDg=0) increases. From this we can see that there
for which stable modes may exist. In order to examine the/ill be more stable roots of the dispersion relationkas-
solutions more closely we have rewritten the dispersion re¢réases, a fact which was borne out by our numerical solu-

lation for trapped cavity modeghaving w;=0) asDg=0,
where

Dr=tanA(vpn)k) = F(Vph), (72

where

tions of the dispersion relation, see Fig. 15.
Taking vph= 1=V, Sina@—Cy(so that F=0) and a
given low value ofk, we know that

tan(A(y1)k)>0, (76)
and thereforeD g( ) >0.
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< 10 < ; B d dF
L 5 ¥ 5 n b — >——
g -\ 3 ZBERN gy BAK) >, (78)
3 [0} i g [o) s o i '
W 5 W 5 the tan function will only encounter the curve Bfat that
-10 -10 L L one point and so there will be no double root. Differentiating
25 3.0 35 4.0 45 25 30 35 40 45  the left-hand side of Eq78), we get
vph. vph.
d tan(Ak dA k seé¢(Ak 79
—(ta =—kse ,
T T 1T ; dvph( n(Ak)) avon (Ak) (79
$ sp Y1 ERE 78 T BN
P e WA P T oA A and, since tarAk) =0 implies thatAk=n, andA andF are
2 N A 2 IR A independent ok, we can use this to simplify E¢69) so that
= oh / ~ 0 l i P our upper limit on the value df at which a double root can
25 3.0 3.5 40 45 25 3.0 35 40 45 occur is

™ o dF / dA 0
FIG. 18. The form of within the region of phase speed in which stable fast deh deh

body modes may exist when,=5 and a= /4, with the function tanfk)

overplotted as dashed lines for various values.of evaluated aw,,=V, sina—cy. Oncek is above this limit
the fast cavity modes will become unstable at exaetly
=V, Sina—Cg,, and the lower branch of each harmonic will

Now we assume that the first value of the phase speeBCt P& apparent. _ _
(above the lower cutoff for the existence of stable modes Fi9ure 15 includes the pointsnarked by diamondshat
Vph=V, Sin@—Cg) at which tanfk)—x is at phase speed ‘é"_e have prleg:gteg fort the Or{rietjotf 'nStlab'“Prq uf'ng a wo-
Von=1,. In the first instance we will assume that, limensional(2D) Newton method to solve the two equa-
<v, sina. At this point, we know thaDg(i,)>0. The tions. Here we have used a second order Taylor series ap-
o . , .

function D is continuous in the range/q, , ,) and so there proximation to find the value of the derivative, but the code
’ still converges quickly to the double root.

are three possibilities for the solutions of the dispersion re= . i : ,
lation within this range: Similarly, if we fix k, we can solve the simultaneous
(i) Two real, distinct solutions of Eq34); Egs. (77) for vy, and v, (0r a) to predict the onset of the
(i) No real solutions of the dispersion relatifthere instability in terms of those variables. We show the predicted
will be two complex conjugate solutions, of which we will onset of instability in Fig. 16 by a diamond and the dotted
line marks thev, value of this point. The predicted, value

pick the one which satisfies E(B2)], or; _ ) . 0.
(iii) One real, “double” root of the equatiofi.e., a root agrees exactly with the value at which the instability occurs
’ ' for our numerical results.

that touches but does not cross thg=0 line). This must
then be a turning point of the dispersion relation with respect
to v, and at this point

B. Surface modes

The dispersion relation for stable surface modEs.

DR
Dgr=0 and —=0. 77 (59)] may be written as

ov ph

_ _ _ D= Ny (V= V, Sin a)?taniN;k) + eN,(vZ —v?2
In fact, althoughF is not strictly continuous av SRR Yo ! 2 %ph Tal

=v, Sina, the above analysis holds for all values ¢%§ xcog @)=0, (81
>V, Sin a—Cy becausd- is always positive. Now, since we

2_ 21,2 2_ 212 ;
know from our numerical result&ee Fig. 15that there are where Ni=—m;/k" and N3 ma/k®. By analyzing the

two real roots of the dispersion relation for ldwy and at two terms (.)f the equation in a 3|m_|lar way to that used fo_r
the dispersion relation for fast cavity modes, we may again

largerk these roots have become a single complex (cloo- : - : .
sen from the two possible complex roots by our outgoingShOW that the onset of instability may be predicted by simul-

condition in the magnetosheattit follows that the transition taneously solving the equations

must occur at a “double” real root. Thus, by solving the dDg

simultaneous equations given in Eg7) for the variablesk Ds=0, and———=0, (82
andv,,, we can numerically predict the onset of instability ph

for these two fundamental modes. Asincreases, new for v, and either ofv, anda. Figure 7 includes the point at
branches of the tan function encounter the curve @r low  which instability is predicted by this method whé&r2 as
Vpn- Thus successively higher harmonic modes have doublshown by a diamond. The vertical three dot-dash line shows
roots at which they go unstable. However, this will not be thethe predicted value of, and is in excellent agreement with
case for all highek. The lower branch of each harmonic first the onset of instability given by our numerical solution.
appears at a value dt such that tark)=0 whenvy,  Similarly, in Fig. 10 we have plotted the points that satisfy
=V, Sin a—Cy. However, if at that value ok Egs. (82) as diamonds. The points predict excellently the
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(a) Slow Cavity
5.0 T T Modes

Y SINA+C,e

{_stavte |
o G <y< G+6
V,SiNa—C,g . VT ——
o @?] sin o sin o, @ allk Stable
sin ¢
{_stabte_|

c,

iteri . Vv, +C,
Criteria for onset of Instability: v,=—2—=
sino

o v-c
Criteria for change from Leaky to Stable: v,=—2~—<
sinol

Maximum Growth Rate: ®~0(10 ?)

FIG. 20. A summary of the properties of the slow cavity modes.

c= dDr 83

Figure 19 shows the coalescence of the fundamental fast cav-
. o . . ity modes in the top diagram, again with the predicted onset
1.50 1.60 1.70 1.80 190 200 of instability shown by a diamond. The lower diagram shows
the value ofC for the two modes while they are both stable.
FIG. 19. (8 The dispersion diagram showing the upisolid line) and ~ We can see that the upper mode has positive energy, whilst
lower (dot-dashed linefundamental fast cavity modes wheg=5.0 and  the lower has negative energy. Asincreases toward the

a=m/2. The diamond shows the predicted point of coalescence and onset : - o _
instability and the dotted line shows thevalue of this point.(b) A plot Value at which mStabmty occurérepresented here by a ver

showingC (which is proportional to the energy of the waws a function of  tical dotted ling, the magnitude of the energy of both mOdeS_
k for the stable part of the two modes, af@l an enlargement of the area tends toward zero. Thus this instability occurs when a posi-
around the point of coalescence. The dotted line shows the predivade tive and negative energy wave coalesce, and the mathemati-
of the coalescence. cal analysis above identifies the point at whigk0 and the

two different energy waves meet.

points where the stable surface modes coalesce and become In Fig. 10 the slow surface mode that had negative phase

unstable, as well as the point where the unstable mode pgPeed wherv,=0 becomes a negative energy wave when
comes stable and splits into two modes. the phase speed becomes positive, and so the onset of insta-

In Sec. VB we saw that the onset on instability of the Ib|I|ty of thefslow surf_ace mode also correhsponds.t.o the coa-
fast surface modes is almost independenk ¢ee Fig. 7. '€Scence of a negative energy wave with a positive energy

Examining Eq.(81) we can see that the only explicit depen- wave. > . . .
dence ork when the dispersion relation is written in terms of Southwood shoyved that Fhe points of marginal stability
the phase speed is within the function cott). This func- for the shear flow discontinuity of an unbounded magneto-

tion only varies significantly whehk is small and is close sphere(with both magnetic field and plasma pressure on both

to unity for N;k=1. Thus the double roots of the dispersion Sides of the boundanare given where both
relation will vary little ask varies. R1(X1)=—Ry(X,) (84)

and
C. The onset of instability and the energy of the
waves dR; dR,

19y S2 4y

Referring back to our definition of the wave energy of dx dx,

the stable modelEgs. (35) and(42)], we can show that, for are satisfied. Herg; andx, are the phase speeds in the rest
given values ok, v, and «, C can be rewritten as frames of the two fluidsleach normalized to the Alfve

(85
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Fast Cavity
Modes

y< G % .
sino a
ol | _Leay ]
k<cutoff (Eq. 65) “:]L
$ % <v<—q+c‘2 eaky
C‘] sina. " sina_ | po
Y ?_J k>cutoff (Eq. 65)
= Stable
k<cutoff (Eq. 65)
Leaky
G t+6
*__sina fow k {
k? Stable ) ]
FIG. 21. A summary of the properties of the fast cavity
highk modes.
= Unstable
dF jdA
k<d_‘i»z /d_‘{,h D=0
= and
dD, ldv,=0
[ Criteria for onset of Instability ]
dF 1 dA
k>——[-—
. / y, %t
y=
°  sina

Maximum Growth Rate: ®~0(1)

speed of that fluidand R, and R, are the dispersion rela- modes occurs for values of the flow speed such that
tions for each side of the boundar is defined such that v, sin a>c;—cg, while slow cavity modes are trapped when

Vo Sina>Cg .~ Csp- EXcitation of fast and slow cavity
(86) modes occurs when, sin a>¢;+Cy andv,, Sin @>cy+Cyp,

respectively. The form of the flow around the magnetosphere
wherej=1,2. We can show, by replacing Southwood’s nor-is such that modes are most likely to be trapped or excited on
malizations with ours, that these conditions are equivalent tehe flanks and it is in this region that Pc5 oscillations are
our conditions for the onset of instability, given in BEG7).  observed to be present almost continuously. On the flanks it

has also been observed that there is a strong correlation be-

VII. DISCUSSION AND CONCLUSIONS tween Pc5 wave power and the speed of the solar wind flow
(and hence the speed of the flow along the flanks

In comparison with wave guide mode mode.g., Although slow cavity modes may be trapped even in
Wright?®), which fectl flecti -
"9 ), which assume a perfectly reflecting magneto conditions of zero flow(e.g., whena=m/4) and excited for

pause, we have looked at the trapping and excitation of caf
ity modes when the magnetopause is taken to be a fre%mallvalues of/,, the growth rates of these modes are three

boundary. We have found that whether the magnetospherﬂrders of magnitude smaller than the groyvth rates of both the
cavity traps or excites modes is highly dependent on thdast body and surface modéshen they display wave num-
value ofv, (the speed of the flow in the magnetosheatne ber-selectloin Also, the maximum growth rate of the slow
flow around the magnetopause has a stagnation point at ti&Vity modes occurs for values of, close to the onset of
nose of the magnetosphere and then accelerates approachifgtability. Hence we can conclude that slow cavity modes
the speed of the upstream solar wind flow along the flankgre unlikely to be excited to a sufficient amplitude to be
(see Spreiter and Stah&ta Our model has shown that for €asily observed.

low flow speeds the cavity modes are leaky, for moderate  Since the trapping of fast cavity modes occurs ¥gr
flows they become trapped and for high flow speeds they>(Ci—Cs)/sina and these modes are excited fioy™> (¢
become unstable and energy from the magnetosheath flow isCs)/sin «, we can see that fast cavity modes will be most
fed into the magnetosphere, increasing the amplitude of theasily trapped or excited for values afclose tow/2 (i.e.,
body modes. More specifically, the trapping of fast cavitythose modes propagating parallel or quasiparallel to the flow

Wi

B kVaj '

&
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C, +c
Vv,< slow™ 52

Vo<V, sinat

SLstowt €2
sing
Vi<, < Y, ' - | o unbounded Stable
Unstable for large k
CE +c5
A sino ®. unbounded
Unstable l—" }”or large k

Vo>V, | Fast Surface
Modes v, > M
sina. :}_} o, bounded
Unstable for large k

<P, <V,

3]

~ CT + vpho DV s Copow T vpho
1 .
2 sin o

sin o

Vi ,Y, given exactly by D) =0 and Z_DS =0 v, given by D, =0 and Z—fs =0
Vo
Onset Instability independent of k.
Onset Instability independent of k.

FIG. 23. A summary of the properties of the fast surface modes.
FIG. 22. A summary of the properties of the slow surface modes.

in the magnetosheathUsing some typical values for the
various parameters we get,;~400-500 andcs,~120  claimed this was a result of their nonuniform magnetosphere.
km/s (see Fuijitaet al.}” and also Manret al®), we find that We have shown that this behavior is also true for the case of
guasiparallel propagating fast cavity modes will be trappedh uniform magnetosphere and that the fast and slow cavity
for solar wind speeds ofg,>300-400, and excited when modes also display wave number selection.
Vew=>500-600 km/s. This is in excellent agreement with Fast and slow surface modes also exist in the magneto-
Engebretsoret al,! who observed that Pc5 waves on the sphere. The behavior of the slow surface modes is summa-
dawn flank have a much increased power index ¥gy,  rized in Fig. 22. The slow surface modes become unstable
>500 km/s. Fast cavity modes propagating obliquely to thedor relatively low flow speeds; however, they restabilize and
magnetosheath flow will need significantly higher flow become fast surface modes for higher flow speeds. The upper
speeds to be excited or even trapped. Thus, observable Pobthese surface modes coalesces with the original fast sur-
waves on the magnetospheric flanks may be expected face mode and becomes unstable. The growth rate of these
propagate quasiparallel to the flow in the magnetosheathmodes is unbounded #&sincreases. The onset of instability
The almost continuous observation of Pc5 oscillations mayf the fast surface modes occurs for decreasip@s « in-
be explained by the fact that wave trapping will occur forcreases and is almost independenkpfvhen stable, these
normal solar wind conditions. are fast surface modes decaying away from both sides of the
Above the threshold speed for instability of fast cavity magnetospheric boundary. For low flow speeds the unstable
modes we have found negative energy waves. These solmodes are predominantly evanescent in the magnetosphere,
tions represent modes that propagate in the negativeut for speeds above, sin @=c;+cy, the modes become
y-direction (i.e., sunwarglwhen there is no flow. The onset globally oscillatory in the magnetosphere and display wave
of instability of the fast modes is found to occur when thenumber selection. The behavior of the fast surface modes is
dispersion curves of positive and negative energy wavesummarized in Fig. 23.
meet, and at this point the wave energy is zero. Using a free boundary allows the generation of quarter
The behavior of the slow cavity modes is summarized inwavelength modes within the magnetospheric cavity. This is
flow chart form in Fig. 20. The slow cavity modes are first a feature not found in the traditional cavity mode models and
unstable for lowk, as that is where they have lower phasemay explain the lowest observed frequencies found in obser-
speed, whereas the phase speed of the fast cavity niiiges vations.
properties of which are summarized in Fig.) 2lecreases Nonlinear effects have been shown to be important in
with increasingk, and so these modes are first unstable forthe evolution of unstable surface modes at the magnetopause
highk. The criterion for the onset of instability for fast cavity both through observations and numerical simulatf§rfé.
modes changes for high[defined by Eq(80)] to occurring  However, unstable body/wave guide modes have only re-
wherev,,=v, sina—c<. For any given value o, all the  cently received attention and have proved elusive in the
fast cavity modes will be unstable for higher valuekohce  data?®?°We have considered the linear evolution of unstable
Vo Sin a>Ci+Cy. modes in order to classify the criteria for the onset of insta-
Fujita et al*’ found that the fast surface mode displays bility and to compare the relative sizes of linear growth rates
azimuthal wave number selectidga maximum value ofw; for the various types of modes. Nonlinear simulations of the
for a finite value ofk) for flow speeds above a threshold and growth of these modes would help to clarify their evolution.
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