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Nonstationary driven oscillations of a magnetic cavity
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The problem of transition to the steady state of driven oscillations in a magnetic cavity in a cold
resistive plasma is addressed. The foot point driving polarized in the inhomogeneous direction is
considered, and it is assumed that the cavity length in the direction of the equilibrium magnetic field
is much larger than the cavity width in the inhomogeneous direction. The latter assumption enables
one to neglect the variation of the magnetic pressure in the inhomogeneous direction, which strongly
simplifies the analysis. The explicit solution describing the nonstationary behavior of the magnetic
pressure and the velocity is obtained. This solution is used to study the properties of the transition
to the steady state of oscillation. The main conclusion is that, in general, there are two different
characteristic transitional times. The first time is inversely proportional to the decrement of the
global mode. It characterizes the transition to the steady state of the global motion, which is the
coherent oscillation of the cavity in the inhomogeneous direction. The second time is the largest of
the two times, the first transitional time and the phase-mixing time, which is proportional to the
magnetic Reynolds number gpower. It characterizes the transition to the steady state of the local
motion, which is oscillations at the local Alfasefrequencies, and the saturation of the energy
damping rate. An example from solar physics shows that, in applications, the second transitional
time can be much larger than the first one. 2000 American Institute of Physics.
[S1070-664X00)04509-7

I. INTRODUCTION the local Alfven frequency at some position. This position is
called the resonant position.

Magnetic cavities are common in solar and space phys- et us consider a cavity inhomogeneous only in one spa-
ics. Well-known examples of magnetic cavities are the magtial direction in planar geometry, or in the radial direction in
netospheric cavity and the solar coronal loops. Studying oseylindrical geometry. Let it be driven in the direction perpen-
cillations in magnetic cavities is important for explaining dicular both to the inhomogeneity direction and to the equi-
such phenomena as excitation of ultra-low-frequefigyF)  librium magnetic field, by a driver that is independent of this
waves in the magnetosphere and solar coronal heating.  direction, in planar geometry, or in the azimuthal direction

There are two scenarios of excitation of oscillations inby the axisymmetric driver in cylindrical geometry. Such a
magnetic cavities. The first scenario is the so-called lateradriving excites purely Alfva oscillations. Initially, the mo-
driving, where oscillations are excited by an incoming fasttion of each magnetic field line is a superposition of two
magnetosonic wave. The second scenario is the foot poirtscillations: one with the driving frequency, and the other
driving. In this scenario oscillations are excited by driving with the local Alfven frequency. Since the local Alfwefre-
the magnetic field lines at one end of the cavity. In thisquency varies in space oscillations of the neighboring mag-
article we consider only the second scenario; however, fronietic field lines become more and more out of phase. This
the mathematical point of view, there is not very much dif- process is called phase mixingt causes the buildup of large
ference between the two. gradients, which leads to the efficient damping of the oscil-

When the cavity is inhomogeneous in at least one spatidtions with the local Alfve frequencies on the phase-
direction perpendicular to the equilibrium magnetic field, themixing time-scale proportional to R, Here R is either the
eigenfrequencies of oscillations of different magnetic fieldviscous Reynolds number, or the magnetic Reynolds num-
lines are different. These eigenfrequencies form the “Alfve ber, or the total Reynolds number in plasmas where both
continuum. More precisely, there is a countable set of Alfve viscosity and resistivity operate. After this transitional phase-
continua, the first of them formed by the fundamental fre-Mixing time the cavity attains the steady state of driven os-
quencies of the magnetic field lines, and the other by th&illation, where all magnetic field lines oscillate with the
overtones. If such an inhomogeneous cavity is driven hardriving frequency. The amplitudes of these oscillations are of

monically, it is possible that the driving frequency matchesth® order of the driving amplitude everywhere except a nar-
row dissipative layer embracing the resonant position. The

thickness of this layer is proportional to %, and the am-
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manet al,? and the transition to the steady state of oscilla-energy dissipation and, as a consequence, efficient plasma
tion has been studied by, e.g., Ruderman. heating. In the limit of vanishing dissipation the heating rate

In what follows we consider only one-dimensional mag-is independent of dissipative coefficients. Strongly enhanced
netic cavities in planar geometry. When such a cavity iswave energy dissipation in dissipative layers in weakly dis-
driven in the inhomogeneous direction, this driving excitessipative plasmas is called resonant absorption. The possibil-
fast waves. If, in addition, the driving amplitude varies in theity of efficient heating by wave energy dissipation even in
direction perpendicular both to the inhomogeneous directionveakly dissipative plasmas has drawn considerable attention
and to the equilibrium magnetic field, the fast waves interacbf plasma physicists to resonant absorption. lohssug-
with Alfvén waves and excite the local Alfaeoscillations.  gested resonant absorption as a possible mechanism of heat-
This interaction is particularly strong near the resonant posiing of coronal loops. Since then resonant absorption has re-
tion. After the transitional time the dissipative layer embrac-mained a popular mechanism for explaining solar coronal
ing this resonant position is formed. Once again its thickneskeating(e.g., Refs. 12-16
is proportional to RY3, and the amplitude of oscillations in It turns out that the efficiency of resonant absorption
it to RY3. Now the motion in the dissipative layer is not strongly depends on the driving frequency. It is most effi-
purely Alfvenic. It is a superposition of fast and Alfae cient in the case of quasi-resonant driving, where the driving
waves, however, the Alfwéc component dominates. The so- frequency is close to the frequency of one of the global
lution describing this motion was given by, e.g., Kappraff modes(e.g., Refs. 17—20 This fact has attracted the atten-
and Tataronié, Davila® and Goossenst al® (see also the tion of scientists studying resonant MHD waves to global
review paper by Goossens and Ruderfhan modes(e.g., Refs. 21 and 22

A very important property of magnetic cavities is the Resonant absorption is essentially a stationary process.
existence of so-called global modes. The global modes ardowever, nonstationary aspects in the theory of resonant
the solutions to the eigenvalue problem for the linear dissiMHD waves are also very important. In magnetospheric
pative magnetohydrodynami@MHD) equations character- physics resonant waves are excited by the external driving
ized by the property that the imaginary parts of the correwith a finite duration in time. It is very important to know
sponding eigenvalues are much smaller than the real partghat is the maximum amplitude of the resonant oscillation
(the eigenvalue problem is obtained by taken perturbationand the minimum spatial scale that can be reached during
of all quantities proportional te~'“!). The complex eigen- this excitation. In solar physics the nonstationary behavior of
frequencies of the global modes tend to the limiting valuesMHD waves is interesting because coronal magnetic struc-
with nonzero imaginary parts in the limit of vanishing dissi- tures(e.g., coronal loopsnormally exist only for a period of
pation. These global modes describe weakly damped frea few days or less. Resonant absorption can contribute into
oscillations of magnetic cavities. heating of such structures only if the transitional time after it

It was Kivelson and Southwo8dvho have first pointed starts to operate is shorter than the lifetime of these struc-
out the importance of the global modes for magnetospheritures.
physics. Since, in the magnetospheric cavity, different mag- To the best of our knowledge the nonstationary behavior
netic field lines oscillate with different frequencies, andof resonant MHD waves was first addressed by Kappraff and
sources of excitation of MHD waves in the magnetospheré ataronis’ These authors studied the transition to the steady
have a broadband frequency spectrum, the resonant conditate of driven oscillation in the approximation of incom-
tion can be matched at an infinite number of geomagnetipressible plasmas, and showed that the characteristic transi-
field lines. Thus, every field line should be in resonance for dional time is the phase-mixing time proportional td’R
broad enough energy source. However, ground, ionospheriéfter this time the dissipative layer is formed. Lee and
and space observations indicate the existence of only one &obert$® have studied the damping of a standing surface
a few resonant field line oscillations. Kivelson andwave on a thin transitional layer in an incompressible ideal
Southwood have suggested that a broadband source wilplasma. They have shown that the damping of the surface
first excite one or a few magnetospheric global moalesre  wave occurs because its energy is transferred into a thin
precisely, the motion very close to that in a global modeenergy-containing layer embracing the resonant position. In
except in a vicinity of a resonant positionThese global ideal plasmas the energy does not dissipate. It is stored in the
modes then act as drivers exciting large-amplitude ULFenergy-containing layer in the form of large-amplitude Al-
waves at resonant positions. The global modes thus select tifieen waves. The transition to the steady state of driven os-
frequency of the observed ULF waves. After this pioneeringcillation in a magnetic cavity has then been studied numeri-
work the global cavity modes remain very popular in mag-cally (e.g., Refs. 24 and 25
netospheric physics. The selection of preferred frequencies In general, the transition to the steady state of driven
by global modes has been demonstrated in numerical wor&scillation in a magnetic cavity can be studied only numeri-
for impulsive driving and random driving? cally. However, there is one exception. Hollfehas stud-

In solar physics the importance of global modes isied resonant absorption of MHD waves in a thin transition
mainly related to the problem of coronal heating. Since thdayer, i.e., under the assumption that the wavelength of the
width of dissipative layers embracing ideal resonant posisurface wave is much larger than the layer thickness. He
tions is proportional to B% in weakly dissipative plasmas pointed out that in this case it is possible to neglect the
the wave motion in dissipative layers is characterized by theariation of the total pressure across the layer. This approxi-
presence of large spatial gradients, which causes strong waweation enabled Hollweg to carry out the analysis for an ar-
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\ | Herev=(u,v,0) is the velocityp=(b,,by ,b,) is the pertur-
' ' bation of the magnetic field®®=Bb,/ u is the perturbation of
/I <> /I . the magnetic pressur®,=B(up) 2 is the Alfven speed,
VO a Y 7 is the coefficient of magnetic field diffusion, apdis the

magnetic permeability of free space. In what follows we
FIG. 1. The sketch of the equilibrium state. The dashed lines show thshall see that large spatial gradients are only present in the
perturbed bqund_aries of the_magnetic cavity. The horizontal double arrovg|gh O< x< a, and only in thex direction. This observation
shows the direction of the driving. enables us to neglect resistivity in regions | and II, and to
write 9%/ 9x? instead ofV?2.

The magnetic field lines are assumed to be frozen in the
bitrary variation of the equilibrium density and magnetic infinitely conducting plasmas a0 andz>L. The plasma
field in the layer. Hollweg studied a standing wave, which,in the regionz>L is immovable, while the plasma in the
from the mathematical point of view, is completely equiva-regionz<<0 moves with the velocity(t,x) in thex direction
lent to studying oscillations of a magnetic cavity. atz=0. As a result we have the boundary conditions

In this article we study the transition to the steady state
of driven oscillation in a thin magnetic cavity in a cold re- Y= (tX), v=0, P=0 " atz=0, ©)
sistive plasma using Hollweg's approximation, i.e., neglect- y=0, y=0, P=0 at z=L. (7)
ing the variation of the total pressure across the cavity. The - )
paper is organized as follows. In the next section we formuNote that the boundary conditions fBr_a_re not independent.
late the problem, and derive equations that are used to stucdyeY follow from the boundary conditions ferandv and
oscillations of the magnetic cavity. In Sec. Il we obtain the Ed- (5) with #?/ax? substituted forV2. In what follows we
solution describing the temporal evolution of the magneticaSSume that the characteristic scale of variatiohisfmuch
pressure and the velocity in the cavity. In Sec. IV the globaf@rger thana, so that we také(t,x)~f(t,0) for 0O<x<a.
modes of oscillation of the cavity are studied. In Sec. VV the =~ We assume thét=gf/dt=0 and the system is at rest for
transition to the steady state of driven oscillation is investi-t=<0, SO perturbations of all quantities and their first deriva-
gated for the global motion of the cavity. In Sec. VI we tives with respect to time are zero tat 0.

address the nonstationary behavior of the velocity. In Sec. Since the cavity is homogeneous in thelirection, we
VIl the energy dissipation rate is calculated. In Sec. VIII we €an Fourier analyze perturbations of all quantities and take

give a summary and our conclusions. In particular, we inthém proportional to exgy). Then, eliminatingo, andb,
cluded the table where the main results are collected. from Egs.(1)—(4), we obtain

92 V2 8%\ du V2 a*u 1 %P g
a2 A2t AT axZ92 T p atZox’ ®
Il. DERIVATION OF GOVERNING EQUATIONS
. _ o . ? 9\ v V2 a*v ik 9°P 9
We consider nonstationary oscillations of a magnetic 2 Va2 o AT T2 o 2 9

cavity, driven at one of its ends, in a cold plas(eee Fig. 1L
The equilibrium magnetic field is constant and in the  Elimination of v from Egs.(5) and(9), and the use of Eq.
direction of the Cartesian coordinatesy, z The equilibrium  (8), yields

densityp is a function ofx. It is constant in region | deter- 2 20 g2 p
mined byx<0, and in region Il determined by>a, and it (_2_ i—z) u —Viﬁ 3” >
only varies in the slab determined by<x<a. at 927 ] gtox IX792
The plasma in the cavity is resistive; however, resistivity 1 (g2 pr: 2P
is assumeq to be \{veak, soitis only imporFant_in regions with  =— 7—(?— Via—zz +V§k2 i (10
large spatial gradients. The plasma motion is governed by PYa
the system of linearized MHD equations It follows from Egs.(8) and(10) thatu andP also satisfy the
au_ 1gP VAab, . equation
A e TB @ 2P (P P\ dpau
—— Vil =+ —=—kP|=Vi7— —. (11
2 ot Alox? gz Adx at
v 1gP Vi db,
T ; W T B 9z’ 2 Equations(8)—(11) and the boundary conditior{6) and
(7) will be used in what follows to study the driven oscilla-
'9_bx _B 5_“ 4 V2D 3) tions of the magnetic cavity. Note that Eq48)—(11) are not
ot A independent because there are four equations for three vari-
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ables. However, it turns out that E@) is suitable to deter- 2 rtof
mineu in regions | and II, while it is more convenient to use Un(Xj)=— py fo &—TCOE{VAjn'(t— 7)]d7
Eq. (10) to describeu in the inhomogeneous slab.

n (—1)) ft(dzpnm)

+ VA kaPa(X)) | d7

piVaj Jo| d7
IIl. SOLUTION FOR THE MAGNETIC PRESSURE IN oy
THE INHOMOGENEOUS LAYER X fo Jo(Vajkn6)COE VANl (17— 6)] d.
Since the quantities andP are zero az=0,L they can
be expanded into the Fourier series (18)
o o In what follows we assume that the inhomogeneous
v=2 va(t,x)sin(nlz), P=2 P,(t,x)sin(nlz), layer is thin,a<L, and we consider motions with the char-
n=1 n=1

acteristic timeL/V,. Then it follows from Eq.(11) that
(12 dPlax~P/L. This estimate implies thalP(t,x,z)=A(t,z)
wherel = /L. To use a similar expansion farwe make the ~ +O(a/L) in the inhomogeneous layer, and we can t&ke

variable substitution independent of in the first-order approximation with re-
spect to the small parametafL. This approximation sig-
u=U+(1—E)f(t X) (13 nificantly simplifies the analysis. It was first used by
L) Hollweg?® and subsequently by Hollweg and Y&hgvhen

studying resonant absorption of MHD surface waves in a
thin inhomogeneous layer. Sinéedoes not vary across the
inhomogeneous layer, it is completely determined by its val-
ues at the layer boundaries(t,z)=P(t,0,z2)=P(t,a,z).
Now Eq.(10) is an equation with the right-hand side known.
It determinesdu/dx for 0<x<a. SubstitutingU and A ex-
panded as Fourier series with respectztato Eq. (10), re-
written in terms ofU, we arrive at

Then the quantityJ is zero atz=0,L and can be expanded
into a Fourier series similar to E(¢L2). The equations fot
are obtained from Eq$8) and (10) by substitutingU for u,
and adding the terms z{L—1)d*f/ot> and (/L
—1)9*f/at30x to the right-hand sides of Eq&3) and (10),
respectively.
In what follows the values ofP, /dx calculated at the

boundaries of the inhomogeneous layer, i.exab,a, play

an important role. In accordance with Appendix A these val- &_2+ Vanl)?2 62Un+ vanl 2!?3Un
ues are given by o2 (Vanl) gtox 7(Vanl) a3
IPn (DI dPPa(x) |, 1 (d? d?A,
x| . Va J’o a2 VakaPa(x) Y (W+ViKﬁ)W- (19
X=X A
X Jo[ Vajrn(t—7)1d7, (14) When deriving this equation we have taken into account that

the variation off across the inhomogeneous layer can be
whereJ, is the Bessel function of the zeroth ordgs 1,2,  neglected. Let us solve E(L9). Since resistivity is assumed
the subscripts “1” and “2” refer to regions | and Ilx;  to be weak, we can try to neglect the last term on the left-

=0, X,= 2, Kk,=(K2+nA2)2 andP(x;)=P,(x=X;). hand side of Eq(19). However, if we then calculate the
As it has been already stated, we neglect resistivity irsolution to the obtained ideal equation and substitute it into
regions | and Il. Then, using E@13) and the identity the neglected term, we find that this term has unbounded
o growth with time and eventually becomes large. This occurs
1— Z_ 2 > Esin(nlz) (15)  because the solution to the ideal equation describes oscilla-

L @qa=1n ' tions of each magnetic field line with its own frequency

V(x)nl. Since the oscillation frequencies of different mag-
netic field lines are different, oscillations of neighboring
PUn o 10°P, 2 & magnetic field lines get more and more out of phase. This
iz TVanlUp=———— — — (16 process, called phase mixing, leads to creation of large gra-

) . ) o o ~dients in thex direction. Hence, to obtain the uniformly valid

we obtain from Eq(8), rewritten in terms ofJ, the equation

Up=0dU,/dt=0 att=0is pative term in Eq(19) into account.
U - J‘t 2 % . 1 %P, Sir[VAnI(t—r)]d W To Iotl)éain the gqli;‘ormly\//vﬁaBlid SOlrL:tign '|\'Arl]e use _tr;e
=" )\ 7n 92 ;ﬁn?x Vo T. entzel-Kramers—Brillouin( ) method. e crucial

step is to find the uniformly valid approximate Green'’s func-
17) tion G,(t,7,x) with respect to time. And to find Green’s

This expression together with E¢l4) determinesU,, at x  function we have, in turn, to calculate the uniformly valid

=0a. Takingx=x; in Eq. (17), using Eq.(14), integrating  general solution to the homogeneous counterpart of E9).

by parts, and changing the order of integration in the seconth accordance with the WKB method we introduce the

term on the right-hand side of the obtained expression fof'stretched” timeT= et, where the small parametewill be

U, (X;), we arrive at determined later. Then we look for the solution in the form
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U, /ax=Q(T,x)exfdie 1O(TX)]. Substituting this ansatz U, 1 [t ) 3

into the homogeneous counterpart of Et9), we arrive at x V2 fo exd —An“(t—7)°/R]
d0 [ (02 dQ (62 90 %0 X cogVanl(t—71)]Y,(7,x) d7 (25)
_ _ — 2| _a; - | — 27 R A n ’ )

Qor [( aT) (Vanl)®| =3ie &T) 3eQ T 72 where

aQ 90 \? )
. 2 i =2 2 d A
+|E(VAn|) aT le 7](VAI"Il) Q( (9X) Yn(t,X): dtzn‘f‘ViKﬁAn. (26)

— 2 -1p—-1
=0(e)+0(e "R, (20 Integrating Eq.(25) with respect tax from 0 toa we calcu-

where the magnetic Reynolds number is given by RIateU_n(a)—.Un(O). On theother.hand, we can calcu!ate this
=aVa; /7 with Va;=VA(0). Now weimpose the condition ~dquantity using Eq_(18). Comparlng the two expressions we
that the dissipative term on the left-hand side of this equa®Ptain the governing equation féx,(t):
tion, which is the last term, be the same order as the terms . —r
proportional toe. This condition results ir= R™13 Collect- >} VAjf Yo(7.%;) de Jo(VajKn6)
ing the terms of the order unity in EGR0), we obtain the =1 0 0
equation corresponding to the approximation of geometrical a t
optics (e.g., Ref. 28 The solutions to this equation are X cogVpjnl(t—7—0)] d0+f dxf Yn(7,X)
0 0

O=xVanIT, 6=0. 1 x extl — An?(t— r)3/R]cog Vanl(t— )] dr

Collecting the terms of the orderin Eq. (20), we obtain the 2pV2 2 ¢ of

equation corresponding to the approximation of physical op- = A > (- 1)if ——cog Vi nl(t—7)]dr. (27)

tics. Choosing either the first or the second expression Eq. ™ =1 0dT :

(21) for ©, we write this equation in the form To solve this equation we use the Laplace transform. Using
JQ JQ the theorem about the Laplace transform of convolution and
ﬁ=—3An2T2Q or —==0, (220  a standard table of Laplace transforifesg., Ref. 29 we

obtain the following solution to Eq27):

where A =(1/6)al?V;(dVa/dx)%. The solutions to these ipV2 [=ts Wo(w)

equations are straightforward, and eventually we obtain the A, (t)= Py I:)—_R)e‘i“’t do, (28
general solution to the homogeneous counterpart of £j. . ~e=+sDnl®;
in the form 1
o7Un Wn(w):wf(w)((VAlnl)Z_wZ_ (VA2n|)2—w2 ’
™ =exp(— An?t3/R)[C,(x)cog Vanlt) (29
+Co()SINVAnIt) ]+ Ca(X), (23) where f(w) is the Laplace transform off(t), ands is an

arbitrary positive constant. The dispersion functif( w;R)

where C;(x), C,(x), and Cs(x) are arbitrary functions. IS given by
Green'’s function G(t,r,x) with respect to time has to sat- ) (0) 1, .

. . 2 o ! = +

isfy the following conditions: it is a solution to the homoge- Dn(w;R)=Dp (@) + D (@iR), (30
neous counterpart of Eq19) for any fixed 7<t;G,(t,7,X)
=0 for t<7;G,(t,7,x) and dG,/dt are continuous at DV(w)=
=1,9°G, /9t?>—1 ast— r+0. It is straightforward to check

VAl(VilKﬁ_ w2)1/2+ VAZ(V,ZL\ZKﬁ_ wz)llz
(Varnl)?— o? (V2N = ow®

that the function G(t— 7,x) determined by 3D
—2 2.3 1 (2 Varp— 0’
G(t,X)=(Vanl) 2H(t)[1—exp — An?t3/R)cog Vanlt)] D!, )(w;R)=|f —5o5 {Fl(0=Vanl)/s,]
0 [}
+O(R™1B) (29)
+F[(w+Vanl)/ 8,1} dx, (32)

satisfies all these conditions. HeretH{s the Heaviside step
function, Ht)=1 for t>0 and H{) =0 for t<0. Note that
G,, depends on the differende- = instead oft and = sepa-
rately because the coefficients of Efj9) are independent of t 1

time and, consequently, it is invariant with respect to the F(y,t)=JOexy{iys—§s3> ds, (33
time shift. The solution to Eq19), satisfying the zero initial

conditions, is given by the convolution of,@,x) and the and the complet€ function is given byF(y) =F(y,%). This
right-hand side of Eq(19). Neglecting the second term in function was first introduced by Bori¥,and then used by
Eq. (24), which is small due to assumptiorsR., and using Goossent al® to describe the wave motions in stationary
integration by parts, we write this solution in the form dissipative layers.

where §,=(3An?/R)Y3. The incompleteF function is de-
termined by
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The expressiofi28) determines the time evolution of the tailed discussion see, e.g., Rej. 8sing this condition and
magnetic pressure in the inhomogeneous layer. It will beEqg. (37), we obtain the thickness of the dissipative layer
used in what follows to study dissipative eigenmodes and,=|w7/A|**=2ws,(xa)/|A|. Now we introduce the
transition to the steady state of driven oscillations. guantity s, such thaté,<sy<a. Then we use Eq.36) for

|X—Xa|>sa, and Eq.(37) for [x—xa|<sa, to rewrite Eq.

(32) in the form
IV. GLOBAL MODES

. . (1) 1 aViKﬁ_ »?
Global modes of thin inhomogeneous layers, which areD;”’(w;R)=— —f —Fdx
.. . . . . . . 2w 0 (U‘F\/Anl
dissipative eigenmodes with the imaginary part of the eigen-
frequency much smaller than the real part, have been studied 1 Xa—Sp a
analytically and numerically by many authors. In all previous - Z( f + J' )
studies it was assumed from the very beginning that pertur-
bations of all variables were proportional to exppft). This ViKﬁ— w2 i w2k?2
resulted in an eigenvalue problem wiilf as an eigenvalue. X dx+ 5
. . . QV_\/Anl 5A|A|(n|)
This approach was used by, e.g., Einaudi and Ko¥% Mok
and Einaud?® and Rudermaet al3#%1n this article we use Xat
another approach and calculate the eigenfrequency of the XJ
global mode using the nonstationary soluti@8). . _ . o
The dispersion equation determining frequencies of dislt is convenient to make the variable substitutiah= (x
sipative eigenmodes B,(w;R)=0. It is straightforward to ~ —Xa) Sign(4)/5, in the last integral. Now we considét
see thaDgl)(w;R)~(a/L)D§,°)(w). Sincea/L<1, this ob- —®- This enables us to takey,— +.0 gnd Sp— +0. Then
servation enables us to use the regular perturbation methdf€ second integral tends to the principal Cauchy part of the
and look for the solution to the dispersion equation in theintegral overf0,a]. The third integral tends t¢~..F(x) dx
form o=@+ o® with /0@ ~a/L. In the first-order =7 As aresult we arrive at
approximation we obtai® (") =0. This equation coin- a V22— 2 i w2k2
cides with the dispersion equation for surface waves on a Dﬁl)(w;R)=7?J 57— dX+ >,
. . . ) o Vanl —ow |Al(nl)
true magnetic interface in a cold ideal plasma. The solution
to this equation &7 where P indicates the principal Cauchy part of an integral.
ON2 112, 42 ) k2 [(V2. — V2. )24 This result enables us to calculate the explicit expression for
(0n7)"=2{(Var T Vi) kn =L (Vi = Vi) " otV in terms of equilibrium quantities. The real part of this
+4(VpVark?)?1Y3, (34  quantity provides only small correction to the real part of the
eigenfrequency, and it is not important for what follows. In
contrast, the imaginary part is of great importance because it
describes wave damping. Using E(31), (35), and(39), we
DO\ ~1 obtain for the wave decrement,=—J(»{") (3 indicates
do | (35  the imaginary part of a quantitthe following expression

where the derivative on the right-hand side of this expression S i Vai[Vaj (K2 + k) — 0?]

is calculated atw=w(). Let us calculate the asymptotc " [A[(n)2| & (V%1% = 0?)2(Vakh— 0?)
expression foD V(" ;:R) for R>1. For brevity we write (40)
w instead ofwgo) when doing this calculation. Using integra-
tion by parts, we obtain

0 Xp+Sa

L (x—x4) sign(A)/Sa]dx. (39

XA~ SA

(39

In what follows we takew(®>0. In the second-order ap-
proximation we obtain

o =Dl

-1

In this expressiorn):wﬁ]o). The important property is that
vn=0(all), and it is independent of R.

|
— @ —4/3
FlloxVanD/ou]= 5y np TOR™. (36 v. TRANSITION TO THE STEADY STATE OF GLOBAL

DRIVEN OSCILLATION
While this formula with the plus sign is valid for all values

of x (recall thatw>0 and §,, is of the order R¥9), this _ We use the term “g_lobal motion”_or “global oscillz_a—

formula with the minus sign is valid only when the denomi- tion” for a coherent motion of the cavity “as a whole” in

nator of the first term on the right-hand side is not small, i.e.n€ x direction. A global mode is a particular case of global

when |w—Vnl|> 8, . This condition is violated in the vi- oscillation. In what follows we assume that the harmonic
w " P e . .

cinity of the Alfvén resonant position, determined by the drlvm_g starts at the initial moment of time. To satisfy the

condition VA(xx)nl=w. In the vicinity of this position we condition thatf=0f/dt=0 att=0 we take

can use the approximate expression f=fo(1—e M)sin(Qt). (41
. A(X—Xp) B 2 dva The amplitudef, is constant for 8<x<a, and we do not
@=Vanl~ 20 ' A=—(n) dx . (3D specify its dependence aroutside of this interval because it
X=Xp

is not important for what follows. We assume tléats in the
The condition |w—Vanl|~ 48, determines the dissipative Alfvén continuum of the fundamental harmonic with respect
layer embracing the ideal resonant positign(for more de-  to z, Va1l <Q <Vl We also assume th&@<V,xq1, SO
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Ve v vk Vox It is possible that, in_ addit?on tag gnd —w? , there are

T e 2 2 At e other zeros of the dispersion functid(w;R). However,
they have imaginary parts of the same order as real parts, so
that, similar to the poles & (= 1—i), their contributions
can be neglected. Hence, the significant contributions come
only from the four poles*(}, wy, and —w? , and asymp-
totically the integral in Eq(28) is equal to the sum of resi-

dues with respect to these poles multiplied-b27i. These
; A a—iQt Ax A0t R a—iwgt

FIG. 2. The integration contour in the complexplane. The boldface points [eS'qufS are equal tdqe ! Aﬂe ! Age ¢, and

show the simple poles and the branch points. The dashed lines show thha egt respectively, where

cuts.

o -0(14+1) | a(1-i)|e

I I
I I
| I
I I
1 I
I I
i !
| i
I i
I |
} !
I b

— foQn2I12(V2A,— Va,)

- | | Ao BRIV 0 (Vonaz- a7 Y
that the motion in regions | and Il is evanescent in the
direction. The analysis is the same for each harmonic with fOanlzwg(Vf\z—Vil)
respect toz. For brevity we drop the subscript indicating 9= (Viln2|2_ws)(vi2n2|2_wg)
the number of a harmonic. In particular, we writeand A
instead ofx, andA,,. y 1 1 db -t (44
Our aim is to investigate the asymptotic behavior of the QZ_wé QZ—(wg+iQ)2 dow

perturbation of the magnetic pressure in the inhomogeneous, . . . _
layer, A(t), for Qt>1. The temporal evolution oA(t) is The quantitydD/dw in Eq. (44) is calculated ato= w4 . The

determined by Eq(28). The functionD(®(w), given by Eq. asymptotic behavior oh(t) is described by

(31), has four branch points, which ate=+V,« and o A(t)=R(Age M) +e  "R(Age ), (45)
==*+V,k. These branch points are shown by the boldface .
points in Fig. 2. To obtain the single-valued branch of this  Aq,g=4(7Nn)" "pViAqq, (46)

function, we make cuts from these branch points—toe. wherewrzm(wg)~w(°), and indicates the real part of a

These cuts are shown in F'g' 2 by dashed lines. In the cony,antity. We see that, fddt> 1, the global oscillation of the

plex plane with these CWB( )(“,’) is a single-valued func- c4yity is described by the same equation as the oscillation of

tion, and so is the functiow/D in Eq. (28). a weakly damped oscillator with the frequeney and the
The Laplace transform of the functidit) is decrementy, which was first suggested by Hollwé%.n

. 1 1 particular, the characteristic time of transition to the steady
f=fo| Gz 07— (0rin)?) (42 state of oscillation is of the ordey ™. The important prop-
_ erty is that this time is independent of R foeR.
Then we conclude thatV/D has simple poles ab= =) When |Q — w,|> v, the dimensionless amplitude of the

and 0=Q(=1-1i). In accordance with the results of the magnetic pressure oscillation in the steady statg/pVa, is
previous section, tr(loe)re '5(15;"50 a pole at the frequency of thgf the order of the dimensionless amplitude of the velocity
global modewy~w™ +w'™. It is straightforward to show oscillation at the boundaryfyl/Q. When|Q—w,|<7y, the

that D(—w*)=D"(w), where the asterisk indicates the griver is in quasi-resonance with the cavity. We can use the
complex conjugate value. This relation implies that, if approximate formula

D(wg)=0, thenD(— w;) =0, and there is an additional pole dD
of W/D at —wg . It seems from the first sight that, since D(Q;R)~ (0~ wg)—— 7 (47)
W(w) has poles atv=*=V,nl and w= *V,nl, there are dw

poles of W/D at w==*=V,nl and w=*V,nl. However, _ ) )
more careful examination shows that the functidfw) also ~ @ndAg~=—A,. With the aid of Eq.(47), we obtain from
has poles at this values ef The ratio of the two functions, EdS.(43) and(46) that

W and D, each having simple poles at=*V,;nl and w AQ/pViNfO|/|Q_wg|~(f0|/Q)(L/a)>f0|/Q_

=+ Vponl, is regular atw= =V, nl andw= *=Vp,nl. The

Six S|m_ple poles of the integrand are shown by the boldfacg, | ocalL MOTIONS

points in Fig. 2.

To calculatedA(t) we deform the integration contour as Let us study the behavior of theandy components of
shown in Fig. 2. It is assumed that the horizontal parts of thehe velocity,u andv. First we study the nonresonant driving
contour have been moved tei, so they do not contribute where |QQ—w,|>y. It is interesting that this definition of
to the integral. The contributions from the parts of contournonresonant driving coincides with that put forward on
going along the cuts describe the transition to the steady statpialitative grounds by Allaet al® To obtain the expression
of oscillation in regions | and Il. It can be shown with the usefor v,,, we note that Eq(9), determiningv, and Eq.(10),
of integration by parts that, fof2t>1, these contributions determining du/Jx, differ only in their right-hand sides.
are of the order Qt) ", so they can be neglected in our Then it immediately follows that the left-hand side of the
asymptotic analysis. The contributions from the pofes equation forv, coincides with the left-hand side of E(L9)
(+=1—1i) are proportional t@~ ! and also can be neglected. for 9U,/dx, while its right-hand side is- (ik/p)d?A,/dt?.

g
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Therefore, it is clear that the expression fq is obtained
from Eq. (25 for dU,/dx by substituting ik/p)A, for
(1/pvf\)Yn . As a result, after the substitutian—t— 7 in the
integral, we arrive at
ik [t
== fOAn(t— 7) exp(— An?7°/R)cog VanlT) d7.

(48)

Once again, we drop the subscript™for brevity.

To study the asymptotic behavior of for Qt>1, we
substitute Eq(28) into Eq.(48), change the order of integra-
tion, and make the substitution of the integration variable
=s/4, [recall thats,=(3ANn%/R)?]. As a result we obtain

kVZ
R O,

Wh(w)

w+g . ;
e '“td
ngon(w;R) @

ts,, 1
xf exp(iws/ﬁw— §s3> cogVnls/s,) ds.
0

(49

Then we use the same procedure as when obtainin¢4by.

M. S. Ruderman and A. N. Wright

uz—im A e*‘mJ'wexp iQs/é —}53
p5w Q 0 o 3

X cogVanls/é,) ds] . (51
Using integration by parts, it is straightforward to show that
v~fy for any overtone >1). For the fundamental har-
monic (n=1) this estimate is valid everywhere except the
narrow dissipative layer with the thicknesdg (see Sec. IV,
embracing the ideal resonant positioa determined by
IV A(Xa)=Q. In this dissipative layer we use the approxima-
tion given by Eq. (37), and arrive at the well-known
asymptotic formula for the fundamental harmorie.g.,
Ref. 6

ik
2pé,

with o= (x—x,)/ 84 and 8, =| 7Q/A|*3. SinceF(y)~1 for
ly|~1, we conclude that the amplitude win the dissipative

layer is of the ordeffyQ)/5,. Assuming thaV/,;~V o and
dV,/dx~V,,/a, we obtain the estimaté,~Q(alR) 2.

v= (52

R{Aqge "MF(osign(A))},

However, now we cannot neglect the contributions from theHence, once again, we arrive at the well-known result that
poles atw=Q(*+1—i), because they do not decay exponen-the amplitude ob in the dissipative layer is scaled as'R

tially on the time scale)~!. Using integration by parts to

Let us now estimate the transitional time to the steady

simplify the contribution from these poles, and neglectingstate of oscillations,,. Using integration by parts, we obtain

small terms of the order aof,,/(), we eventually arrive at the
asymptotic expression valid faf)>1

K (1 e [ 1,
v=——NR &, Age ™ exp|iQ¢/6,— =S
p 0 3

X cogVanls/8,) ds+ 8, "Age 7 Tort

ts,
X f exp
0

+Ae (107 cos(VAnIt)] .

cogVnls/é,) ds

) 1
(y+|wr)s/5w—§s3

(50

from Eq. (50)

_ ik [1Aa0
PR

{p

J’_

ty Ag( ytiw)

W

—iQ e—yt—iwrt
A Agytio)

W Wy

Am) cogV,lt)

AQ Ag 3
o Mg e (16,)°13 (53
Wqo Wy

sin(Valt) +0(8,10),

where

Wo=02-Van??, Wy=(w,—iy)?~Vini% (59

The third term in the curly brackets appears due to the conThe characteristic damping times of the second and third

tributions from the poles ab=Q(*=1—i). We do not give

the expression foA;, because it is not used in what follows,
and only note thah,, is of the same order of magnitude as

Aq andAy.

As it has been pointed out in Sec. IV, the dispersion

function D,(w;R) might have additional zeros besideg

_ *
and wgy

terms in the curly brackets arg * and 5, '~ Q 'R, re-

spectively. Then,, is the largest of the two times,
te=max(y 1, Q 1RV

(59

The asymptotic expressiofb3) is not valid whenx is
close to eitherxy, determined bynlVa(Xg) = w,, Or t0 Xa

. All these additional zeros have the property thatfor the fundamental harmonic. Whexis close tox, for the

their imaginary parts are negative and of the order of reafundamental harmonic, the contribution to E§3) from the
parts. Contributions from these hypothetical additional zerosecond integral in Eq(50) (terms proportional toA,) re-

would give additional terms in Eq50) similar to the third

mains the same. To evaluate the first integral we use the

term in the curly brackets. However, neither this third termapproximate formul&37) with o =(). As a result, we obtain
nor the hypothetical additional terms are of particular impor-the following asymptotic expression for the first term in the
tance. They simply describe oscillations with the local Al-curly brackets in Eq(50):

fvén frequency decaying on the time scdle ‘R, Hence

the possible presence of these additional terms does not af-

fect the following analysis.
To obtain the steady state of oscillations we take

168, Age "MF (0 sign(A),t48,). (56)

First of all, we note that(o,t8,)~té,+ 2io(td,)? for
|o|ts, <1 (for simplicity we takeA>0). Hence, the ampli-

—o. Then the second and third terms in the curly bracketdude of oscillations at the resonant positiom={0) grows

exponentially decrease, and we arrive at

secularly with time at the initial stage when dissipation is
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negligible. The characteristic spatial scale created by phase Let us now study the case wheje>QR Y3~ 5, . The
mixing at the timet is determined by the condition that the important questions in studying the temporary evolution of
second term in this expression is of the order of the firsthe expressiori57) are when it attains its maximum ampli-
term. This condition gives|o|~(t5,) %, or |x—xa| tude, and what this amplitude is. It is shown in Appendix B
~|tldV/dx| 1. In the magnetospheric context these resultshat, ato=0, the maximum amplitude is attained tatt,
were first obtained by Wright'*® and then confirmed by ~3y 1In(y/4,). Using Eq.(B4), we conclude that the maxi-
Mann et al* mum amplitude of oscillations with the frequenay at o
The functionF(y,t) converges td=(y) very rapidly as =0 is of the orderf,{}/y. Hence, while it is still much
t—oo. For exampleF(0,2) differs fromF(0) by less that larger than the driving amplitudf,, it is much smaller than
2%. If we take t~Q 'RY® then té,~(al)”™® and the amplitude of oscillations with the frequenfyat x=x,
F(osign(A),ts,)~F(osign(A)) for a/L=<0.1. Hence, we in the steady state.
conclude that the characteristic transitional time for the first  Let us taket satisfying
term in the curly brackets in Eq50) is QO *RY3, and Eq.
(55) is also valid forx close tox, . Using the estimate for the
characteristic spatial scale created by phase mixing at the
time t,|tldV,/dx| "1, and the estimatédV,/dx|~V,/a,
we obtain that this transitional time is just the time necessaryrhen we can use E@B6). Using this equation, we obtain for
for phase mixing to create the spatial scale of the order othe amplitude of oscillations with the frequeney at o=0
aR™ 3, the estimatefo(al) ~te~ 108 For t=t,= 5,3 In(al)|
When x is close toxg, the contribution into Eq(53)  this quantity equald,. For al=0.1 we obtaint;5,~2, so
from the first integral in Eq(50) (terms proportional td\() the condition(59) is satisfied fory/5,=4. Since fort>t,,
remains the same. To evaluate the second integral we ontke amplitude of oscillations monotonically decreases, it is
again use EQ(37), but now witho=w,, and withxg sub-  even smaller thari, for t>t;. And it is also smaller atr
stituted for x,. As a result, we obtain the following 0 than ato=0. Hence, we conclude that the characteristic
asymptotic expression for the second term in the curly brackdamping time of oscillations with the frequeney nearx is

1<ts,<(yl8,)Y*~(al)?*RYE, (59

ets in EqQ.(50): t,. Sincet;~ &, ~ QR the expressiof55) is once again
. valid.
Clp yteion . . _ _ .
28, Age "R (o sign(A) —iyl, 13,). (57) The absolute value of the integrand in the expression for

F(osign(A)—iyls,,t5,) takes its maximum value &
=(v/68,)2. ConsequentlyF(osign(A)—iy/s, t8,) at-
tains its limiting value of F(osign(A)—ivy/éd,) at t
~(y183)2~alQ~*RY2 This result is in complete agree-
ment with the behavior of the functiordr((x—xg)/4,
—iyls,) for v/ 5,>1. It has the form of a wave packet with

Note that herer=(x—X4)/ 54, andd, andd,, are calculated
atx=x4. Let us first consider the case wheyes QR 3,
Then y/5,<1 and, similar to Eq(56), we can substitute
F(osign(A)—iylé,) for F(osign(A)—iyl/é,,t8,) when
tQ =R We see that the contribution from the second in-
tegral in Eq.(50) is of the order}/§,,. Since, in accordance R
with Eq. (53), the contribution from the first integral is of the the center ak,, the characteristic widtay/{1, and the pe-

. . —1/2 34,35
order unity, it can be neglected. As a result, we obtain that[Loedoor]:jtehreo(ffgﬁ,rzvgfgirzgzz (l?)rd'?hreaRhasé mixiSr10a|§1‘fe(r)fthe
for tQ=RY3, the asymptotic behavior af in the dissipative yhep 9

SR time of the order of) ~*RY2, However, this structure cannot
layer embracing is given by be observed in the vicinity ofk,. The reason is that
| _ F(—iyls,)~exp(2/3(y/5,)%?).% As a result, the ampli-
v=— 21)—59&{Age* noterd B (o sign(A) =iyl 8,,)} tude of oscillations witlh frequenay, in the1 vicinity of x is
@ (58  Proportional to expj—3(y/_&w)3’2)~exp(—§R1’2y/Q) for t
~0"'RY2 Since we consider the case wher)>R 3,
The behavior of the functioR(y—i«) with «>0 was stud- this amplitude is exponentially small, so that oscillations
ied by Rudermaret al®* and Tirry and Goosserfé.In par-  with frequencyw, are completely dominated by those with
ticular, it was shown that, foe=<1, this behavior is almost frequency().
the same as fow=0. Hence, we conclude that, after the Note that the formation of the energy-containing layer,
transitional time of the ordef) "*RY3 the quasi-stationary embracingxy, with the characteristic width equal toy/(},
dissipative layer embracingy is formed. The structure of and with the amplitude of oscillations inside it of the order of
this dissipative layer is practically the same as of that emf,Q)/y, was predicted by Lee and Robéftsand Mann
bracingx,. The amplitude of oscillations is of the same et al** However, since these authors used the ideal MHD
order of magnitude as in the dissipative layer embraging equations to describe plasma motions, they did not study
Then, when the time progresses, the oscillations in the dissdamping of oscillations in the energy-containing layer, and
pative layer slowly decay on the time scale®. This decay did not find the minimum spatial scale at which dissipation
is adiabatic in the sense that the structure of the dissipativetops phase mixing.
layer remains the same. Note that the appearance of large- We start studying the behavior &f in the inhomoge-
amplitude oscillations in the vicinity oky, even when() neous layer from considering the motion of the layer bound-
#w,, was found in numerical simulation®.g., Refs. 24  aries, described by(t,x;) (recall thatx;=0 andx,=a).
and 25. These quantities are determined by Ef#§i8) with P,(x;)
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=A,(t). To obtain the expression describing the asymptotic k2

behavior ofU(t,x;), we make the Laplace transform of Eq.
(18), which yields, with the aid of Eq(28),

0 2wt
Fn(va 22—

wz)
2(— 1) oV W(w)(Va k2— ?)?
mD(w;R)(Van??—w?)

(60)

where Uj is the Laplace transform dfl(t,x;), and W(w)

and D(w;R) are given by Eqs(29)—(32). It is straightfor-
ward to show that the right-hand side of EGO) is regular at
w?=V3;n?2 Now the asymptotic behavior af(t,x;) for

tQ)>1 is calculated in the same way as thatAqt). As a
result we arrive at the expression, similar to E4p),

U(t,x) =R(Uge ) +e "R(Uge "), (62)
where
'QAQ{VAl(VAlK _92)1/2+VA2(VA2K -03)'3
e 2|2(VAl VAZ) ,
(62)
o Ag(Vigk?— o)1 ©3

i Var(Van?P = wf)

M. S. Ruderman and A. N. Wright

U(t,x)=U(t,Xa) + p—Z’m{iAQe*imG(a sign(A))},
(65)

where the equilibrium quantities are calculatedxatx, .
The incomplete G-function is determined by

texp(iys)—1
G(y,t)=fo%e

and the complete G-function, first introduced by Bdfiss
given byG(y)=G(y,*). Once again, Eq65) gives a well-
known result(e.g., Ref. 6. The amplitude olU(t,x) in the
dissipative layer is of the order ofafy/L)InR when InR
>L/a, and of the order of, when InRsL/a.

Wheny< QR %3, the quasi-stationary dissipative layer,
similar to that embracing,, forms nearx,. On the other
hand, wheny> QR oscillations with the frequency,
decay faster than this layer forms.

Let us now concentrate on the case wheee()
and estimate the order of magnitude of different terms in Eq.
(64) for x not very close tax,, i.e., out of the dissipative
layer. The analysis, similar to that used to calculate the maxi-
mum amplitude ofy atx,, leads to the conclusion that the
maximum amplitude of the second term in the curly brackets
atxq is of the same order as at-xg. Let us first consider
the fundamental harmonic. It is straightforward to show that
the second term in Eq64) is of the orderalf,<f, for x

3, (66)

R—1/3

When deriving this expression we have neglected smalkx, whenj=1, and forx>x, whenj=2. Since the term

terms of the order o&/L. We drop the subscrigtat U, and
Uy because these quantities take the same valueg=fdr
andj

U(t,x;) is of the orderf,, we conclude that it is the domi-
nant term in Eq(64) for x<x, whenj=1, and forx>xu

=2. We see that the transitional time to the steady stat&hen j=2. The situation is even simpler for the overtones.

of oscillations of the inhomogeneous layer boundaries is thdhe termU(t,x;) is dominant in the whole interval Ox

same as foA(t), namelyy L.

The quantitygdU/dx is given by Eq.(25). To study the
asymptotic behavior ot (t,x) for t()>1 we use the same
procedure as in studying the asymptotic behaviov ofNVe
substitute Eq.(45) into Eq. (25), integrate the result with
respect toa, and use the boundary conditionsxatx; . As a
result we obtain

U(t,x)= U(tx)+J —rm[Aﬂ(Q2 Vik?)e 1

t8,, 1
xf exp(iQs/&w—
0

=S

3 3) cogV,ls/é,) ds

+Ag(wg—Vak?)e Miert

td, 1
xf expg (y+iw,)slé,—
0

3%

X cogVals/é,) ds] : (64)

<a both forj =1 andj =2. As we have seen, the transitional
time to the steady state of oscillations with the frequeficy
is of the ordery ™! for U(t,x;). Consequently, we obtain a
very important result. The transitional time to the steady
state of oscillations for the dominant motion in tkelirec-
tion far away from the dissipative layer ig~1. When y
>R 13 this transitional time is much smaller thap.
After a time of the order ofy !, the inhomogeneous layer
oscillates “as a whole” inx direction with the frequency?,
with the exception of the narrow dissipative layer embracing
Xa . In this layer the transitional time ig>y L.

In the case of the resonant driving, whéfe—w,|<1y,
the analysis of this section remains the same for the over-
tones. For the fundamental harmonic the only difference is
that amplitudes of all motions are larger by the factor of the
order ofL/a than those in the case of the nonresonant driv-
ing, and in all regimes there is only one dissipative layer
embracing the positiorRa~Xg . Itis also instructive to recall
that, in the case of resonant drivingy~ — A, for the fun-
damental harmonic.

It can be verified that this formula gives the same result for

j=1 andj
to that of Eq.(50). It can be shown that the transitional time
to the steady state of oscillationstis. For the fundamental
harmonic there is the dissipative layer embraciag The
steady state of oscillations in this layer is described by

=2. The investigation of this expression is similar \,;; ENERGY DISSIPATION

Let us calculate the energy dissipation rate per the unit
length in they direction, averaged with respect yo When
we took all variables proportional €Y, we implicitly as-
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2
dx

iftvn(r)dr

X Jo

1fa J k Rl A ft —yr—iw d
i R A

78, 1
X j exp( ysl 8, — —53)
0 3

the mean value of the product of the two quantitigandh,

sumed that we consider the real parts of quantities. Then foTa
we have

0

k [2mlk iky iky 1 *
Zjo {R(ge™) H{R(he )}dy—zi)‘i(gh ). (67)

Using this result and Ampe’s law we immediately obtain

the energy dissipation rate averaged with respegt to X (expli(w;=Vanl)s/s,]
2
d€ 1 ra L 7 (a L +expli(w,+Vanl)s/S,]) ds J dx. (70
—=—f dxf |j|2dz=—f dxf |V xb|?dz,
dt 20'0 0 0 2,“ 0 0
(68)

The expression in the square brackets is large only in the

whereay=1/u7 is the resistivity ang is the density of the vicinity of the re_sonant positiong, and.it is large because of
electrical current. Dissipation becomes substantial only whef1€ resonance in the first exponent in the parentheses. The
large gradients in the direction are built up in the vicinities S€cond exponent is nonresonant and can be neglected. Using
of x, andx, . Note thatx, should be labeled by the subscript integration by parts, we get rid of the integration with respect
“n” because it is different for different harmonics with re- t0S. Since the dominant contribution comes from the vicinity
spect toz. We drop this subscript #” for brevity. When  Of Xg, We use the approximatiof87). Making the substitu-
large gradients are present, tneomponent of the magnetic tion of the integration variablex=xg+ a0 with 6,

field dominates other components in the vicinitiescgfand = 2@d,/|A[, and neglecting derivatives of the equilibrium
X.. This observation enables us to use the approximatioﬁuam'“es in comparison with derivatives of quantities de-
|3><b|~|(9by/ax|, pending ono, we obtain

To calculateb, we use Eq(4). The ratio of the second
term on the right-hand side of this equation to the term on
the left-hand side is of the order R<1 even in the sta- Ja
tionary dissipative layer embracing, in the steady oscilla- /0
tion state. These two terms are of the same order only in K2 .
regions where the oscillation amplitude varies on the spatial ~ TJ' [Ag
scale of the order iR~ 2. Such small spatial scales appear 4p°A ‘5\2 -
in the vicinity of x4 in the case wherg> QR 3 However, s 1
as it was explained in the previous section, these small scales X f wrexp< iorsign(A)+y7l8,— = 7_3) dr
are built up at times when the amplitude of oscillation with 0 3
the frequencyw, is exponentially small, so it does not con- ftaw

2
dx

iftvn(r)dr

X Jo

e yi—iwt

tribute significantly to energy dissipation. This analysis en-

1
Texp< iorsign(A)—itw,/6,— 3 7'3> dr
ables us to neglect the second term on the right-hand side of

0

Eq. (4) when calculatingo, . Then, using Eq(12) and car- 2

rying out the integration with respect mwe arrive at +C.C-] do, (71)
dé szVin ” al g ([t 2
—=——""> n? —j vp(7)d7| dx. (69  where “c.c.” denotes the complex conjugate quantity. It is
dt 4L =1 oldx Jo " o p jug q Y.

straightforward to show, using integration by parts, that the
ratio of the second integral in the square brackets to the first
We are only interested in the asymptotic behavior of thisone is of the order 06, /w,<1. Hence the second integral
quantity fort(2>1. To obtain the asymptotic expression for can be neglected. Now we square the expression in the curly
Jovnd7, we use the same procedure as we used in Sec. VI torackets, and write the product of two integrals as a double
obtain Eq.(50). Then we retain only the resonant terms, integral with respect te-and+’ . Then we change the order of
because only these terms contribute into the energy dissipategration and use the identity

tion. As a result we arrive at an expression coinciding with
that obtained by the simple substitution fef of Eq. (50)

with the third term in the curly brackets neglected.

Since we have assumed that the driver is in resonance
only with the fundamental harmonic, the first term in the
curly brackets in Eq(50) is of the orders,, at any spatial
position[see Eq.(53)] whenn>1, and its contribution into where § indicates the Dirac delta function. As a result we
dé&/dt is negligible. Hence, fon>1, arrive at

jjc explio(r—7")]do=276(7— 1), (72
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['2 [

X Jo

2 which resulted in Eq(793). First, using integration by parts,
dx we get rid of integration with respect ®o Then we write the
cosines as sums of two exponents and neglect the nonreso-
2 nant ones. Then we neglect the derivatives of equilibrium
2y1l6,— 573) dr. quantities in comparison with derivatives of terms varying
on the spatial scalé,. Now we make the substitutior
(73 =x,+ 38,0, and integrate only over a narrow dissipative

. T . layer with the thickness of the order 6f embracing bottx,
All equilibrium quantities in this expression are calculated at ndx,. This enables us to use the approximatiad) and

X=X,. Note that, although we did not average with respect . - . - .
to tir?1e, the right-hand side of this expression does not osc:il\—'_l_\’k:Ite Q_\fAI - 5”‘75'9”(A)’ wr_.v.’l*l - 50’(5_ g)agr;(A). .
late with the frequencyw,. This property was noticed in en, neglecting sma terms similar to_ the secon te_rm n
. . Y . the square brackets in E¢r1l), we rewrite the expression

numerical simulation&) and demonstrated by Wright and
Allan*? subsequently. Here we have proven the result ana(-74) as
lytically. The dependence omis hidden in expressions for k? il ot [P
the equilibrium quantltles;/_and_Ag. _ m f_m[A“e fo T

Whenn=1 the calculation is more complicated, because
we have to take both terms in the curly brackets in &)
into account. As we have already explained, the dominant
contribution into energy dissipation comes from the narrow
dissipative layers embracing the two resonant positi@gs, ot [ e . .
andxg . For 1<tQ<RY3the thickness of these layers canbe Age rfo rexp(|(a—§)73|gn(A)
substantially larger tha@d,, but it is always much smaller
thana. If |xa—x4|~a, the two dissipative layers do not
overlap, and the integral ovgd,a] of the product of the two
terms in Eq.(50) is very small and can be neglected. We
consider a more general case whbrg—xg| can be much : . f
smaller tharma. Then, using Eq(50), we obtain fom=1 the respect tor as a dou_ble mte_gral with respect toand 7,
expression similar to Eq(70), however containing three change the order of integration, and use &t§). Then, re-

terms on the right-hand side. The first term is obtained fromc"’“llilng e>_<pressions for the first and second terms, we even-
the right-hand side of E70) by takingn=1. The second Ually arrive at
term is obtained from the right-hand side of E§0) by al g [t
takingn=1, y=0, and substituting) andA, for w, andA, f 5[ vy(7)dr
. . 0 0
respectively. The third term comes from the product of the

'7Tk2|Ag|2 ftaw

L — 2yt 2
~—5——5 a3 € 77 eX
pzAzé\f\ o p

1
xexpl|iorsignA)— §73 dr+c.c.

+y7l8 s
y718,= 37

dr+ c.c.} do. (75)

Once again we write the product of the two integrals with

2
dx

two terms on the right-hand side of E&Q), and it takes the wk? ) a6,
form SCYINT |Ag|*(1—e#1%)5)
p A
al d k ! —yr—iw T o, 2
2.[0 &mm Agfoe rdr +2|Ag|26727tfo Tzexp(Zyrlﬁw— 573) dr
té, ) 1 té,
xf exp (y+|w,)s/5w—§s3) cogV,ls/é,) ds ) AR AQA;ewHi(Qwr)tJ 2
0 0
K s L 2
X ﬁ—xmfﬁ Aq .& dr X exp| —i{rsign(A)+ yr/éw—§7-3 dr|{. (76
to, ‘0 1, Is/5 ) ds| | d We see that the last term in the curly brackets describes the
X ], explifisTgs cogVals/d,) ds|pdx. (74 geillations with the frequencif) — w,|, which is the beat

between oscillations with the frequenci@sand w,. This
The evaluation of the first term exactly coincides with thatbeat phenomenon was first observed by Poedts and Ké&rner
for n>1, and results in the expression on the right-hand sidén the numerical simulation. These authors also suggested the
of Eq. (73). The evaluation of the second term is similar to explanation of this phenomenon as the beat between the driv-
that of the first term, and results in the expression obtainethg frequency and the frequency of the global mode. Our
by substitutingAq, for Ay and takingy=0 in the expression analysis supports this explanation completely.
on the right-hand side of Eq73). Let us now evaluate the The case whergx,—Xg|~a or, which is the sam¢()
expression74). We assume thdb(A—xg|<a, because oth- —w,|~(, corresponds td— . In this case the third term
erwise this expression is small and can be neglected. Than the curly brackets on the right-hand side of Eff) tends
we write Xg asXq=Xa+ (s, Wherel is a free parameter, to zero and the beat disappears. When the driver is in reso-
and calculate all equilibrium quantities»atx, . The proce- nance with the global mode(X=w,), the beat also disap-
dure of evaluation of the expressidi4) is similar to that pears.
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In the steady state of oscillation both the right-hand sidehat the characteristic time is proportional t&Rn the case
of Eq.(73) and the second and third terms in the curly brack-of resonant driving. However, the difference between our
ets in Eq.(76) tend to zero. As a result we obtain for the result and that by Poedts and Kerffds not surprising at all,

energy dissipation rate because the setting of the problem in the present article dif-
fers very much from that in the paper by Poedts and
dé  wk2LQ|AG|? Kerner?*
P — (77)
dt 8p|A|

VIIl. SUMMARY AND CONCLUSIONS
where all equilibrium quantities are calculated »at X, .
Note that the energy dissipation rate is independent;,of
which once again is a well-known result.
Let us now estimate the characteristic time necessa:g
thatd&/dt reaches its stationary value. First we consider th
nonresonant driving wherd) — ,|>y. Wheny=QR 13

In this article we have addressed the problem of nonsta-
tionary harmonically driven oscillations of a one-
imensional magnetic cavity in a cold resistive plasma. We
ave studied only foot point driving, polarized in the inho-
mogeneous direction. We have considered small-amplitude

the upper limits of integration in Eq¢73) and (76) can b oscillations and used the linear description. The analysis has

substituted by infinity fot=1~1. Then it becomes obvious P€en based on the two main assumptidiisthe magnetic
1 Reynolds number R is large atiil) the cavity width in the

that the characteristic transitional time fd€/dt is y -. ) ; . o .
When y>QR 13 the analysis, similar to that used to study direction perpendicular to the equilibrium magnetic field,

Eq. (57), shows that the right-hand side of Eg3) and the & is much smaller than the cavity length in the direction of

second and third term in the curly brackets on the right-hand® magnetic fieldL. These two assumptions have greatly
side of Eq.(76) decay on the time scale of the order of simplified the analysis. In particular, the second assumption

Q~1RY3. Hence, we conclude that the characteristic transi_has enabled us to neglect the variation of the magnetic pres-
tional time ford&/dt is t,, given by Eq.(55). sure in the direction perpendicular to the eqwhbpum mag-
Now we consider the resonant driving. For the sake Opetlc field. _A§ a result we have managed to obtain the so_lu-
simplicity we take(Q)=w,; however, the analysis remains tion describing the temporal _e_volutlon of _the m:?\gnetlc
valid also for|Q — w,|=<y. The amplitude of the fundamen- pressure qnd the veloc;lj[y explicitly. Using this solut!on we
tal harmonic is now larger than the amplitudes of the overN@ve studied the transition to the steady state of driven 0s-
tones by a factor of the order &f/a. This implies that the C|Ila_t|0ns, and calculated the energy dissipation rate in the
terms withn>1 in the sum on the right-hand side of §§9) a1ty _ _ _
can be neglected in comparison with the first term. Then, ©On the basis of our analysis we have made the following
using Eq.(76), the relationA;~—Aq, and integration by c_onclusmns. O_ne should dlstmgwsh_ between the global_mo—
parts, we obtain tion of the cavity and the local motion. The global motion
corresponds to the magnetic pressure oscillation, and the os-
cillation of the magnetic field lines in the inhomogeneous

2 2 ts
d_g_ M{ (1—e "™2— 2_7J “(1—e Yt T8y)) directionx, with the exception of field lines in the vicinities

dt 8p|A| w JO of the resonant positions. Fof2>1 (t is the time and? the
2 driving frequency the global motion of the cavity is exactly
xexp| — y(t—118,)— 3 7_3) dr] _ (78) the same as that of a damped oscillator. After the transitional
time of the order ofy 1~L/aQ (y is the decrement of the

fundamental global modet attains the steady state of har-
Once again it is obvious that the characteristic timeyis monic oscillation with frequency). When the driving is
when y=QR™'%. Let us study the case whege>QR™ . nonresonant|Q — w,|> y, wherew, is the real frequency of
For t5,<1 we can takee 27 3~1 in the integral in Eq. the fundamental global mogethe amplitude of the global
(78). Then the integral is easily calculated, and we find thatmotion is of the order of the driving amplitude. When the
the second term in the curly brackets in E@@) is approxi-  driving is quasi-resonant|Q — o,|=<7v), the amplitude is
mately equal to unity fot>+y~1. This consideration shows larger than the driving amplitude by factor of the order of
that the transitional time cannot be much smaller tign ~ Q/y~L/a.
~QR™ 3, If we neglect the exponent in the parentheses in  The local motion is the motion in thedirection, which
the integrand, we only increase the second term. On the othé& the direction perpendicular to the equilibrium magnetic
hand, after this neglect it becomes similar to the absolutéield and to the direction of inhomogeneity, and also the
value of the expressio(b7) at c=0. Then we can use the motion in thex direction in the vicinities of resonances. We
analysis of this expression carried out in the previous sechave assumed th& is in the Alfven continuum of the fun-
tion, and conclude that the characteristic decay time for thelamental harmonic with respect zpso there is a resonant
second term i€) " RY3. Hence, the characteristic time nec- positionx, where the local Alfve frequency matche®. In
essary so thal&/dt reaches its stationary value is alwdys  addition, there is the countable set of resonant positigps
no matter if the driving is resonant or nonresonant. In parwhere the local Alfve frequency matches either the fre-
ticular, this time isQ ~*RY® when y= QR 2. Hence, we quency of the fundamental global mode={1), or the fre-
have not found the effect obtained by Poedts and Kether. quency of the global modes corresponding to overtomes (
On the basis of numerical modeling these authors claimed-1).
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The motion of a magnetic line in the direction is a |Q— w,|. This oscillation is caused by the overlapping of the
superposition of the oscillation with the frequerfdyand the  two dissipative layers, one embracirg and the othexg.
oscillation with the local Alfve frequency. Oscillations at This phenomenon was first found in the numerical simula-
the local Alfven frequencies decay on the phase-mixing timetion by Poedts and Kernéf.
scale Q" 'RY3 and after that all the magnetic field lines Poedts and Kernéthave found that the transitional time
oscillate with the frequency). Far away from the resonant 0 the steady state of energy dissipation is proportional to
positions the oscillation amplitudes are of the order of theX i the case of resonant driving)}= ;). We have fougd
driving amplitude. In a thin dissipative layer with the thick- in our analysis that this time is always proportional t§°R

nessd,~aR ™2 the oscillation amplitude is larger than the no matter V\{hether the d'r|vmg IS resqnant or nonresonant,
. : Yy However, this difference is not surprising at all. Poedts and
driving amplitude by a factor of the order of'R

. . Kernef* considered lateral driving in cylindrical geometry.
Since the fundamental global mode dominates the glob_a}ln addition, the wavelength in the direction of the cylinder

modes of the overtones, a-nd it also has the Iqrgest damplr}g(is was of the order of the cylinder radius in their numerical
time (y=y1<y, forn>1), in what follows we discuss only - simy|ation, so the long-wavelength approximation is not ap-
the motion in the vicinity ofxg=Xxg;. The motion in the pjicable to their study. Hence, the setting of the problem in
vicinity of X4 depends strongly on the ratio between the decthe present article differs very much from that in the article
rement of the global modeg, and the inverse phase-mixing by Poedts and Kernéf.

time QR™3, Wheny=QR %3, the decay of the global mo- The main conclusion that we make on the basis of our
tion with frequencyw, is slow enough to make possible the analysis is that, in general, there are two different transitional
formation of a quasi-stationary dissipative layer embracingimes in the problem of driven oscillations of a magnetic
Xg - Fort~Q RY3 the thickness of this layer, and the am- cavity. The first transitional time is the time necessary for the
plitude of the oscillation with frequency, inside it, are of ~ global motion of the cavity, which is the coherent motion in
the same order of magnitude as those in the vicinitx,of  the direction of the inhomogeneity, to attain a steady state of

DR : Nati o e i -1
Then the motion in this layer decays slowly on the time scaleScillation. This time is of the order of™". The second
y L. transitional time is the time necessary for the motion inythe

When y>QR3, the amplitude of the oscillation with direction, and th_e energy dissipation rate to attain their
steady states. This time is of the ordertpf
Note that in practically all applicationg=QR ™3, In
this respect let us consider one example from solar physics.
1 13 K The ratio of the length of a coronal magnetic loop to its
Y In_(YR 19). _Tlhelr/13 it slowly decays on the phase- radius is always smaller than 100. This implies the estimate
mixing time scale() ™ "R™. y/Q=0.01. If we use the formulas based on classical Cou-
The motion of a magnetic field line in the direction  |omp collisions, we obtain R10'2 Assume that one end of
also consists of a superposition of an oscillation with fre-the |oop has started to be harmonically driven with a period
quency 0, and an oscillation with the local Alfve fre-  of 1 min. Then the transition to the steady state of the global
quency. However, in contrast to the motion in theirection,  oscillation of the loop, which can be observed, will take
the oscillation with frequency) dominates the oscillation abou 1 h orless. On the other hand, the energy dissipation
with the local Alfven frequency everywhere, except in the rate in the loop attains its stationary value only after a few
vicinity of x4, after a time of the order of !, evenin the days.
case where/>OR 13 This fact enables us to claim that the To make the main results obtained in this article more
global motion of the cavity, which is the coherent motion in @ccessible, we collected them in the following table:
the x direction, attains its steady state after a time of the

the frequencyw, in the vicinity of x4 attains its maximum
value (which is larger than the driving amplitude by a factor
of the order of Q/y~L/a<RY® at time t,

order of y~ 1.

In the dissipative layer embracing, the motion in thex non-resonant driving quasi-resonant driving
direction has an amplitude of the order of the driving ampli- ySORV |y > R v S QRS | 4 QR
tude multiplied by InR. Whery=QR %3, the amplitude of |Glebalor | Amplitude |~ Jo ~fo ~Lfofa | ~Lfsa
the oscillation in thex direction with frequencyw, in the coheren Transitonal |, o . o
vicinity of x4 is of the same order of magnitude as in the|motion steady state

vicinity of x,. On the other hand, wheps> QR Y3, this Dissipative | Thickness |64~ aR™3 |84 ~ aR™V?| 64~ aR™3 | 64~ aR"I/

amplitude always remains smaller or of the order of the drivy,, . Amplitude | fR1s | RS | (LRI |~ fo(L/a) R
. . . . . orv
ing amplitude. These results show that the characteristic tim
.. . embracing z4 | Transitional
for the transition of the local motion to the steady state of e to the Ny QTR ~ QTR
. . . _ _ t tat
oscillation ist,=max(y 1, Q'RY). e A —
. . . . . . - . . — — ~ afR” ~al”
The energy dissipation rate attains its stationary valuqDisipative | Thickness |da ~aR™ |8y ~aR70| B4 T00 2| 54 T00,
also after a time of the order df,. When|Q—w,|~Q, o Ampide | _ppi | oppge |~ BRY ~ Lfula
or |Q—w,|<7 (the case of the quasi-resona)cé mono- of v (n>1) (n>1
tonically increases to its stationary value. However, wher| mbrecing o Transitional | | oaigin | oo ~ Q1R

7<|Q—w,|<Q, it oscillates with the beat frequency steady state
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APPENDIX A: CALCULATION OF @P,/dx AT THE
INHOMOGENEOUS LAYER BOUNDARIES

In this appendix we calculateP,,/dx atx=0,a. In re-
gions | and IIP is determined by Eq(l1l) with dp/dx=0.
The substitution of Eq(12) in this equation results in the
equation forP,. P, vanishes a$x|— . Since the cavity is
at rest fort<0, P,=dP,/dt=0 att=0.

Let us first solve the equation fd?,, in region Il. Sub-
stituting P,,= Q-+ P,(a)e ™ “™’ with X’ =x—a into the equa-
tion for P,, and dropping the prime, we obtain

#Q  ,5Q d*Py(a)
T Vi tVamQ= 5

Q satisfies the boundary conditio@=0 atx=0, Q—0 as
x—oo, which enables us to expar@ into the sine-Fourier
integral:

— KpX

Q=- (A1)

2 0 o
Q(x)= ;fo Q,sin(xy)dyx, Q= fo Q(x)sin(xx) dx.

(A2)
Then we obtain from EqA1)
Q0 L, 5 x d?Py(a)
gz T Valkatx )QX__WT' (A3)

The solution to this equation satisfying the initial conditions
Q,=dQ,/dt=0 att=0 is
o~ ftdzpr«a) X SIVa(rp+ x?) YAt —7)]
X - VA(KﬁJFXz)s/z 7.
(A4)

Using Eq.(A2) and the relation betweeR,, and Q, we ob-
tain from Eq.(A4)

Py
X

2

td?P,(a)
’7TVA 0

dr?

= _Knpn(a)_
x=a

T

y f‘”xz sin[Va(xa+x?)YAt—17)]
0 (k5+x?)%

With the aid of the formul&
= sin[c(x?+y?)Y3]

Jo =

dy.

(A5)

cos(bx)dx

S H(e=b)3dly(c2~b?)?]

with H the Heaviside function, we obtain
=i Va(kat x*) YAt =7)]

JO 2)1/2

a
dx= 5 Jo[Varn(t=7)]:
(A6)

(ka+x

Nonstationary driven oscillations of a magnetic cavity 3529

Using this formula and integration by parts we eventually
transform Eq.(A5) into Eq. (14) with j=2. Equation(14)
with j=1 is obtained from Eq(14) with j=2 by takinga

=0 and substituting-x for x.

APPENDIX B: INVESTIGATION OF EQ. (57)

Let us find out when the amplitude of oscillations, de-
scribed by Eq(57), attains its maximum value at=0. We
consider the case where>§, . Discardinge '“+ and the
constant multiplier, we write the essential part of Egj7),
determining the dependence of the oscillation amplitude on
time, asF(é)=e “F(—ia,&), wherea=y/48,>1 andé
=14, . The functionF(¢) takes its maximum value dtde-
termined bydF/dé=0. Differentiating(¢) and using inte-
gration by parts, we write this condition as

g(é)= fgsz exy{ as— %33) ds=1.
0

Since G(0)=0, G(»)> [;s?exp(—s¥3)ds=1, and dG/d¢
>0, this equation has exactly one positive solution. Let us
try to find the solution satisfying the conditiafi1. This
condition enables us to neglest/3 in the exponent in Eq.
(B1), and rewrite it in the approximate form

(B1)

(a??—2aé+2)e%=2a°. (B2)

Obviously, £ can satisfy this equation only #£>1, so we
can neglect the second and third term in the brackets. Then,
taking the logarithm of both sides of E(B2), we obtain

aé=aé=3Ina—2Inina. (B3)

Sinceé,, satisfies the conditiong,<1 andaé,,>1, it is the
approximate solution to EqB1). The second term on the
right-hand side of Eq(B3) is much smaller than the first one
and can be neglected. Then, returning to the initial variables,
we obtain that the maximum amplitude in E§7) is attained
att=t,,~3y 1In(y/8,). Once again, neglecting’/3 in the
exponent in the expression f@i(¢), we immediately obtain

Flém~=a t=5,17y. (B4)

Note thatdZF/dé=—e *[G(¢)—1], so dF/dé<0 for ¢
>¢&m, 1.e., F(&€) monotonically decreases f@r> &, .
Using integration by parts we obtain

1 3 1 1
— _a&B_ 7(15_'__ —af
F(é) ae ae ae
¢

J oo

Let us taket< a'?. Then the second term on the right-hand
side of Eq.(B7) is much smaller than the first one and can be
neglected. If we substituté® for s? in the integrand in the
last term, we increase this term, and obtafF(&)/a
<F(&). This implies that the last term also can be neglected.
Hence, foré<a'?, we obtain the approximate expression

1
as—=s° (B5)

2
S exp( 3

F&)~a le €R. (B6)
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