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The quasi-resonant behavior of linear Alfvavaves in one-dimensional magnetized weakly
resistive plasmas with the slightly inclined equilibrium magnetic field is studied. The analysis
concentrates on the behavior of tlyecomponent of the velocityy, which is the component
perpendicular both to the inhomogeneity direction and to the equilibrium magnetic field, and the
z-component of the velocityw, which is the component along the inhomogeneity direction. It is
shown that the behavior ef andw is described by the functiorfs(o;A) andG(o;A), whereo

is the dimensionless distance along the inhomogeneity direction and the parAnubigracterizes

the relative importance of resistivity and the magnetic field inclination near the quasi-resonant
position. The functionsF(o;A) and G(o;A) are generalizations of th& and G functions
introduced by Goossens, Ruderman, and Hol\Wvegl. Phys.157, 75 (1995] and coincide with

them forA =0. The behavior oF (a;A) andG(o;A) is studied numerically for different values of

A. It changes from monotonic to oscillatory whdnis increased. It is shown that the connection
formulas giving the jumps ofv and the perturbation of the total pressure across the quasi-resonant
layer and the rate of energy dissipation in the quasi-resonant layer are independent of the inclination
angle. © 1999 American Institute of PhysidsS1070-664X99)00703-X]

I. INTRODUCTION nant absorption has been considered as a possible cause of

) ) the observed loss of power of acoustic oscillations in the
One of the most interesting phenomena related to pmp%icinity of sunspots (Hollweg!! Lou? Sakurai et al,'3

gation of linear magnetohydrodynamiHD) waves in in- . ssens and PoedfsGoossens and Hollwelg,and Stenuit
homogeneous plasmas is resonant coupling between gIobg{ alls)

waves and local Alfve or slow waves. In weakly dissipative 'Il'hé theory of linear resonant MHD waves in inhomoge-
plasmas, this resonant coupling occurs in thin resonant Iayernseous olasmas is extremely complicated when the equilib-

with the thickness determined by dissipative coefficients.. . . ;
rium quantities depend on all spatial coordinatesg.,

The plasma motion in the resonant layers is characterized tgp . )
large amplitudes and gradients. Resonant interaction of fa ”ght. and ThompSO]I'.{.aljld references therginThe as- .
sumption that the equilibrium state depends on one spatial

magnetosonic waves and Alfvavaves was suggested as a ; . o
possible mechanism of excitation of uItra-Iow-frequencycoordmate only results in a great simplification of the theory.

(ULF) MHD waves in the magnetosphere by Chen andn what fgllows we only cgnsider the Qriven prqblem, yvhere
Hasegawhand Southwood.Since these pioneering papers, perturbations of all quant|t|e§ harmonlcglly oscillate with the
this mechanism was remained popular for explaining excitafféduency of the external driver. Then in the case of a one-
tion of ULF waves(see, e.g., Hugh&and Wright). dimensional equilibrium, the linear MHD equations can be
Due to large gradients in resonant layers resonant MHO-ourier analyzed with respect to time and two spatial coor-
waves can be efficiently damped even in weakly dissipativélinates. As a result, these equations are reduced to a set of
plasmas. This property of resonant MHD waves inspirecprdinary differential equations. When the plasma is ideal, the
lonsor to suggest resonant absorption of the wave energy iene-dimensional equilibrium is planar, and the equilibrium
resonant layers as a possible mechanism of heating magnetitagnetic field is unidirectional and perpendicular to the in-
structures in the solar corona. Since this original work, resohomogeneity direction, this set of equations contains a sin-
nant absorption has grown into a popular mechanism to exgular point. The solutions describing resonant MHD waves
plain solar coronal heatingsee, e.g., Kuperustal,® are singular at a resonant magnetic surface.
lonson! Davila® Hollweg? and Goossen®. Recently, reso- One-dimensional equilibria with the unidirectional mag-
netic field perpendicular to the direction of inhomogeneity
20n leave of Institute for Problems in Mechanics, Russian Academy of&/€ often used to model real magnetic configurations, such as
Sciences, Moscow. Electronic mail: michaelr@dcs.st-and.ac.uk the penumbral regions in the solar photosphere or the Earth’s

1070-664X/99/6(3)/649/11/$15.00 649 © 1999 American Institute of Physics

Downloaded 01 Feb 2008 to 138.251.201.127. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



650 Phys. Plasmas, Vol. 6, No. 3, March 1999 M. S. Ruderman and A. N. Wright

magnetotail. However, the assumption that the equilibrium z

magnetic field is perpendicular to the inhomogeneity direc- B

tion is highly unrealistic. In reality the magnetic field is only

approximately perpendicular. The propagation of MHD 6

waves in one-dimensional planar equilibria with the unidi-

rectional oblique magnetic field was considered by Schwartg g 1. The sketch of the equilibrium and coordinates. The magnetic field

and Bel'® These authors showed that in the case of oblique =B(cos6,0,sin6) has constant strength. The density varies only witp

magnetic field there is no singularity in the linear ideal MHD if ¢ is nonzero there is a field-aligned density variation.

equations no matter how small the anglbetween the equi-

librium magnetic field and the direction perpendicular to the

inhomogeneity direction. oblique unidirectional magnetic field §|<1). These au-
This result has an obvious physical interpretation. Wherthors made wrong conclusions that the amount of energy

¢ is small (in particular, zeryy strong transformation of the dissipated in the quasi-resonant layer is independent, of

energy of a fast magnetosonic wave that carries energgnd that the effect of finit@ is only important in the quasi-

across the magnetic surfaces into the energy of local Alfve resonant layer embracing the resonant position that is present

oscillations occurs in the vicinity of the quasi-resonant surwhen §=0.

face. Note that resonance occurs at a resonant magnetic sur- Later Wright and Garman studied the same problem,

face whend=0. For 6+ 0, but| §|<1, the resonant condition Thege authors found strong mode conversion from the fast to

is satisfied only approximately and this approximate resoAlfven modes in the vicinity of a spatial quasi-resonant po-

nance occurs on a surface that is not a magnetic surface. \Wsion corresponding to the Alfveresonant position fod

call this surface the “quasi-resonant surface.” Whegn0,  =0. However, they did not find any energy absorption,

the energy of Alfve oscillations is accumulated in the vicin- Which is not surprising at all since the plasma was ideal and

ity of the resonant magnetic surface because Alfwaves the solution nonsingular. The results by Wright and

cannot carry energy across the magnetic surfaces. Since fparmaf’ also show that, whe®#0, the solution differs

the driven problem we assume that the driving is acting fofrom that for =0 not only in the vicinity of the quasi-

an infinitely long period of time, this energy accumulation resonant position, but also in a very large domain beyond

results in the infinite wave amplitude at the resonant magthis position.

netic surface. On the other hand, whé0, the Alfven Hence, we have a peculiar situation. The energy absorp-

waves carry the energy from the now quasi-resonant surfacéon is identically zero wheré+ 0, while it is finite whend

so the wave amplitude is finite at the resonant position and=0. Obviously, this situation arises from using the ideal

the solution does not contain the singularity. plasma approximation. Actually, both+# 0 and dissipation
Inspired by Schwartz and B&t,Goossent all® stud-  remove the singularity in the linear MHD equations. So,

ied a more general situation where equilibrium quantitiesrom the physical point of view it is convenient to assume

depend on two spatial variables. These authors showed thiat there is at least some small dissipation and then to con-

in this case once again there is the resonant magnetic surfagigler the limit6— 0. In doing so we can hope to reconcile

and solutions describing driven MHD waves do contain thethe two cases##0 and§=0.

singularity. So one-dimensional equilibria with the oblique ~ The aim of the present paper is to study the wave behav-

magnetic field are very exceptional from the point of view of ior in the quasi-resonant layer in a weakly dissipative plasma

the theory of resonant MHD waves in ideal plasmas. with the slightly oblique equilibrium magnetic field. The pa-
Singularities in solutions describing resonant MHD per is organized as follows. In the next section we derive the

waves appear because the approximation of ideal plasmasligear governing equations for quasi-resonant waves. In Sec.

used. Real plasmas are always dissipative. Dissipation rdll we obtain the solution to these equations describing the

moves singularities. However, when dissipation is small it isvave behavior in the quasi-resonant layer. In Sec. IV we use

only important in a thin dissipative layer embracing the idealthe solution obtained in Sec. Il to study the wave behavior

resonant position. In the limit of very weak dissipation thein the quasi-resonant layer. Section V contains summary and

amount of energy dissipated in the dissipative layer is indeconclusions.

pendent of dissipative coefficients. As a result, the amount of

dlss[pate'd energy can be corregtly calculated even in the AR DERIVATION OF GOVERNING EQUATIONS

proximation of ideal plasma using the Landau rule to pass

the singularity. We consider a cold resistive plasma with the equilibrium
While real equilibria are always three-dimensional, one-densityp depending on the-coordinate only in the Cartesian

dimensional equilibria very often give a good first approxi- coordinates,y,z The equilibrium magnetic field is constant

mation to reality. A better understanding of what happensand in thexzplane, so that it can be written as

when we pass from the case where 0 to the case withd B=B(c0s6,0,5in6) o

#0 is very important for applications. Recently, this prob- T

lem has become increasingly interesting for studying wavevith 6 the angle between the equilibrium magnetic field and

propagation in the Earth’s magnetotail. Hansen and H&told the x-axis (see Fig. 1. We choose such a direction of the

considered the energy deposition into a quasi-resonant layaraxis that6>0. The linear momentum and induction equa-

in a cold, ideal, one-dimensional plasma with the slightlytions take the form

X
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ov 1
P =—VP+— (B V)b, (2
db 5
E=(B-V)V—BV-V+77V b. 3

Herev=(u,v,w) is the velocity,b= (b, ,by,b,) is the per-
turbation of the magnetic fielgy is the magnetic permiabil-
ity of vacuum, andz is the coefficient of magnetic field
diffusion. P is the perturbation of the magnetic pressure
given by

1
P=—(B-b). (4)
M

In what follows, we assume that the magnetic Reynolds
number is very large. This assumption enables us to use rerp
sults obtained on the basis of ideal MHD when calculating=——-—sin @

the last term on the right-hand side of Eg). As a result we

arrive at
b _ B-V i BV ‘9v+ VI (B-V)v—BYV 5
W_( ' )E_ ot [(B-V)v—=BV-v]. (5

Eliminating b from Egs.(2) and(5) we obtain

v PP 1
poa=—V oz +—(B V) +77V2)[(B V)v—BV-v].
(6)
The y-component of this equation is
Fv 1 P
p—tg——(B v)? +77V2 ) %y (7)
It follows from Eg. (2) that
B-v=0. (8)
Taking the scalar product of E¢3) with B we obtain
iBZV v——£+nV2P C)
M ot
Elimination ofu andv from Egs.(7)—(9) yields
3
[jt (BM:) ((9t nVZ) pvi Z—VZV— (Z—\)l(vtanﬁ
+£— V2P |=vi—5— &4P2, (10)
ot at2ay

wherevi=B?/ up. We take thez-component of Eq(6) and
use Eq.(9) to get

P sing 9?P s
%9z B gz 7V'P
Pw 1 oW 20
== p gt (BV)Y o+ VR (11)

Equations(10) and(11) constitute the set of equations far
andP.
Now we study the steady state of driven oscillations

where all quantities oscillate with a real positive frequency

w. Since the equilibrium state is independenixaindy, we
can Fourier analyze perturbations with respect to this vari
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able. This consideration enables us to take perturbations of
all quantities proportional to exigkx+ky—wt)]. Then Egs.
(7), (10), and(11) are transformed to

K, 2 iy d%v ok, Ky p
0] v+vA smad +ik, cosé U+ZW P
(12
2 i d2
w?+vi Sin 6 +iky cost 1+_d?)
(dw _ d?P
X| pva E—lkxwtane —|wP—77d—r¢—
Ia)vAk2 (13
d K, - 7? d*P
az sm0d +ik, cosé Ezd_z“
. ipva K, 2 i d’w
=lpow+ smﬁd +iky,cosf| |w+ — w a2l

(14)

When deriving these equations we have used the fact that
resistivity is only important in the thin dissipative layer
where the characteristic scale in tkedirection is much
smaller than those in the and y-directions. This fact has
enabled us to use the approximatigl >~ 5d?/dZ°.

Equations(12)—(14) will be used in the next sections to
obtain the solution describing the wave behavior in a quasi-
resonant dissipative layer.

Ill. SOLUTION IN THE DISSIPATIVE LAYER

In what follows we restrict our analysis to the case
where the magnetic field is quasi-horizontal, i#<1. This
assumption enables us to use the approximatiorg-sif)
cosf~1. Then Eqs(12)—(14) take the form

02d20+2'k 0dv w?—v3k2
azZ APt Va v
+i7’9 +|<2d2 @k p 15
ol faz ) gz = P 15
3 Stk d®w  w?—v3kZ dw
R T S
in i 2d3w
iw(wz—vakz) iw6? d’P
= —+ —_—
pUa pva dzZ°
2ka6’dP+7]w2
pvi dz puj
X 1+_i770,§ 6 d +ik g —dZP 16
: o2 | Paz ) a2 a7 19
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dP 67?( d _ \d*P
| =+ iKy | =
dz o dz dz
P2 2 ; 2
. ipva i iy dw
_Ipr+T(0d_Z+IkX W+Ed_22> (17)

When deriving these equations, we have neglected obviously

small terms like, e.g.¢°dP/dz on the left-hand side of Eq.
(17) or ik, 8(w?/va—k2)w on the left-hand side of Eq16).
When §=0 and =0 Eqgs.(15—(17) are reduced to

p(w?—vikd)v = wk,P, (18
dw
pv,i(wz—vf\kﬁ)E=|w(w2—u§k2)P, (19
dpP
w5=lp(w2—vik)2()w. (20

The solution to these equations is singular at the Alfieso-
nant positionz, determined by the equation

w
va(Za)= ol (21

It is straightforward to show that in the vicinity @ this
solution is given by

wkyP

P=const, v=——7—"", 22

VT oA (z-2 @3

iwk§P| -

w=— oA n|z—za| + const. (23
When deriving Eqs(22) and (23), we have used the Taylor

expansion
U2
w?—vaki=A(z—2,), A= _k’%d_ZA (29
Z=ZA

This expansion is valid in the intervii,—s,z,+s] with s

M. S. Ruderman and A. N. Wright

When|A|<1 it is straightforward to see that the resis-
tive terms on the left-hand sides of Eq$5) and(16) domi-
nate the first and second terms dad f/dz <|k,f|, wheref
is eitherv or w. Therefore, the first and second terms can be
neglected in comparison with the fourth terms and in the
latter #d/dz can be neglected in comparison with, .

In what follows we assume thak,|le..=O(1). When
|A|=1, the second terms on the left-hand sides of ELfS).

and (16) are of the order of larger than the fourth terms.
However, the ratio of the first terms to the second terms are
of the order §|><1, so that the first terms can be neglected.
It is straightforward to show that the ratio 66 f/dz to |k,f|

is of the order] 8/k,l of *>~ 6V/2<1. Hence, for any value of

A we can simplify Eq(15) to

2iw6dv d%v ok,
A(Z—ZA)U'Fk—XE—I?]wd?'—TP. (27)
We cannot neglect the resistive term even when1 be-
cause this is the only term providing dissipation.

The left-hand side of Eq(16) can be rewritten in the
same simplified form as the left-hand side of E2j7). How-
ever, before writing down the simplified version of E6),
we consider its right-hand side. Simple estimates show that
the first term on the right-hand side is much larger that all
other terms. In addition, due to the resonant condit@®b
we can use the approximatias? —v3k?~ —v3k?. As a re-
sult, the simplified form of Eq(16) is

dw 2iw?6 d’w d3w

2

w

P G i —— = — Y
A(z zA)dZ+ Kk dZ e p P. (28

It is straightforward to show that the ratios of all terms in
Eq. (17) to the first term on the left-hand side are small. This

observation leads to the approximate equat®idz~0, or
P=const. (29

Hence, the right-hand sides of Eq&7) and (28) are con-

much smaller than the characteristic scale of the densitgtant.

variation| .

It is convenient to introduce the new dimensionless vari-

Including the magnetic field inclination and/or resistivity able o=(z—z,)/ 6. Then we rewrite Eqs27) and(28) as

removes the Alfva singularity. We assumad hocthat the

both effects are only important in a thin resonant layer em-

bracingz, . We shall check thisd hocassumption after we

obtain the solution in the quasi-resonant layer. Actually, we 3
can consider two, in general, different characteristic scales in

this layer. The first scale is the resistive scéle We obtain

Y A% iy signa= —25 p 30
P Jo Hiovsign PR (30
dw oA wo Adw_ wkyP a1
353 W'HO'SIQI’] E——mAl . (31

it comparing the third and fourth terms on the left-hand sider, gove these equations we follow Rudermetral?? and

of Eq. (15) or (16). As a result we have

w7y 1/3

A

The second scale is the inclination scdlg. We obtain it

Tirry and Goossers and introduce the Fourier transform
with respect too,

comparing the second and third terms on the left-hand side

of Eq. (15) or (16). The result is

1/2
= |A|1/25A! A=

fw? w*
kA Ky 7]2A

Since #=0 the sign ofA coinsides with the sign df, .

13
(26)

50: ’

f(s)=f f(o)e '"*do. (32)
Applying this transform to Eq(30), we obtain

do . i 2 27 wky P

—— +signA(2iAs+s%)o=— 8(s). (33

dS pA 5A

The solution to this equation vanishing [&— « is
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1.5 '
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FIG. 2. The real and imaginary parts
of the functionsF(o;A) andG(o;A)
versus dimensionless coordinate
across the quasi-resonant layer for

=0.

i wk P

0=— m[ﬂ sign(As)]
X exp{ —signA| iAs?+ %s3> . (34)
Then the inverse Fourier transform yields
U:—MF(U'A) (35
plAfoa "7

where theF-function is given by
F(a;A)=J exfdi(os—As?)signA— :s®]ds.  (36)
0
The expression fodw/do is obtained by substitution of

wkiP/p|A| for i wkyP/p|A| 5, in Eq.(35). We then integrate
this expression to arrive at

iwkjP N
w= oA G(o;A)+const, (37
with the G-function given by
o eiassignA_l
G(o;A)= jo —
x exp(—iAs?signA — s®)ds. (38

When A =0, the functionsF(o;A) and G(o;A) coincide
with the functionsF(o) and G(o) first introduced by
Boris?* and then used by Mok and Einaftland Goossens

10

IV. WAVE BEHAVIOR IN THE QUASI-RESONANT
LAYER

When 6=0, ideal MHD predicts thav and b, have
1/(z—z,) singularities in the vicinity of the resonant posi-
tion, w and b, have logarithmic singularities, and all other
quantities are regular. In what follows we concentrate on
quantities that are singular in ideal MHD whés-0. It can
be shown thab, is proportional tav, andb, is proportional
to w. Hence it is enough to study the behaviorwofand w
only. Since, in accordance with Eq®5) and (37), the be-
havior of these quantities is determined by the the functions
F(o;A) andG(o;A), in this section we study the behavior
of these functions. In Figs. 2—4 the dependencies of the real
and imaginary parts d¥(o;A) andG(o;A) ono are shown
for A=0, A=3 and A =15, respectively. As it has been
noted, forA=0 F(o;A) andG(o;A) coincide with theF
andG functions in Goossenat al2® Correspondingly, Fig. 2
coincides with Figs. 1 and 2 in Goosseztsal ?° In Figs. 2—4
we see the transition from the monotonic behavior of the
wave amplitude in the quasi-resonant layer for=0 to the
oscillatory behavior forA =15. Since the functiofr(o;A)
determines the behavior of the most singular quamtjtgor-
responding to the Alfue waves, we calculated in Appendix
B its asymptotic behavior foh — . The dotted lines in Fig.

4 show the real and imaginary parts B{o;A) given by
asymptotic formulag66) and (68). There is some difference
between asymptotic and exact results for large positive val-
ues ofo where the wave amplitude is small anyway. How-
ever, for moderate positive values @fand for all negative

et al?® to describe resonant MHD waves in dissipative layersvalues, coincidence of the asymptotic and the exact results is

(see also the review paper by Goossens and Rudéfmén
the next section we use Eq®5)—(38) to study the depen-
dence of the behavior of resonant Alfvevaves in the quasi-
resonant layer on the inclination parameter

excellent, so the solid and dotted curves are indistinguishable
for these values of-.

In accordance with Eq.71), for large values ofA, the
amplitude of oscillations near the quasi-resonant positjpn
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FIG. 3. The same as Fig. 2, however
for A=3.

decays as\ ~Y?whenA is increased. The resonant layer canthickness of the right part of the quasi-resonant layer. Since
be divided into the left partZ<z,) and the right part{ the thickness of the right part is much larger than that of the
>z,). In the left part, the amplitude behaves monotonicallyleft part, the quantity\ 5, can also be taken as the thickness
and reaches its asymptotic behaviar—(z,) ! at the dis- of the whole dissipative layer. It is interesting to note that, in
tance of the ordeA Y25, . So, the thickness of the left part is accordance with Eq(26), the quantityA 25, equalsés,,

of the orderA?5,. In the right part, the behavior of the which is independent of the coefficient of magnetic diffusion
wave amplitude is oscillatory with the characteristic oscilla-7, while A 8, is proportional toz~ Y. Hence, for largeA

tion period of the orde’\'?5,. The amplitude of oscilla- (i.e., small#) the characteristic period of oscillations of the
tions exponentially decreases with the distance fmpon  wave amplitude in the quasi-resonant layer is independent of
the scale of the ordek 5, . At the distances of the order of 7, while the thickness of the resonant layer is proportional to
a few A 85, the wave amplitude reaches its asymptotic be-» 3. The latter result is in contrast with the corresponding
havior (z—z,) 1, so the quantity\ 5, can be taken as the result for the thickness of the resonant layer in the aase

0.6

Re(F) Im(F)

FIG. 4. The same as Fig. 2, however
for A=15. The dotted lines in the up-
per panels show the asymptotical ap-
proximation forF(o;A).

-20 0 20 40 60 -20 0 20 40 60
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=0, where this thickness is proportional 3% (e.g., Goos- TwkZP
senset al29). [w]= lim {w(o)—w(—0o)}=— AL (40)
Now we can discuss thed hocassumption made in Sec. T P

Il that the thickness of the quasi-resonant layer is muchrhe remarkable property of this second connection formula
smaller than the characteristic scale of inhomogenkify  is that [w] is independent ofy and 6. Hence, from the

Whenf/szo this assumption is reduced & <l¢qand, since  “outer” point of view the two casesA<1 andA>1, are

oa~m", it is always satisfied for the large values of the gbsolutely indistinguishable.

magnetic Reynolds number,R However, whend+0, the Let us show that the amount of energy dissipated in the
situation is more complicated. When,Rs very large, the quasi-resonant layer over one period is independentarid
characteristic thickness of the quasi-resonant layet 45 , 6. Wright and Allarf® showed that the amount of energy
so we obtain the restrictiolh 5p<lq. Together with the dissipated in a resonant layer per wave period inxhand
demand that R be large, it gives y-directions is proportional t¢” .|dF/do|?do with the pro-

(39) portionality coefficient independent af These authors con-
sidered the casé=0, however, it is straighforward to check
When deriving this condition, we have used the estimatehat their calculations are also valid f6e= 0. The coefficient
|A|~ w?/lgqand assumed thalt,|l.,~ 1. For instance, in the of proportionality is now independent of both and 6.
solar photosphere typically R 10°, and restriction39) is  Therefore, to show that the amount of energy dissipated in
satisfied only forg<1°. the quasi-resonant layer is independentspfand 6, it is

It is instructive to compare Fig. 4 with Figs. 4 and 5 by enough to show thaf” .|dF/do|?do is independent of\.
Wright and Garmaft showing the picture of transformation Using the Parseval identity, we obtain
of the incoming fast wave into the outgoing Alivavave. - |dF
The two upper panels of our Fig. 4 qualitatively coincide j .
with the upper panels of Figs. 4 and 5 by Wright and —=|do
Garmant! ext_:gpt their left regions_far f_rom the quasi- | accordance with Eq¢34) and (35)
resonant position where there is an incoming wave.

As we have seen there is strong qualitative difference in ~ F(s;A)= w1+ sign(As)]exp[—signA(iAs?+ Ls%)].
the behavior of the quasi-resonant waves in the two cases: (42
Asl'andA>1. However, we hgve f°“”‘?‘ this @ffergnce Substituting Eq(42) into Eq.(41) we immediately arrive at
studying the problem from the “inner” point of view, i.e.,
when we are interested in the wave behavior in the quasi- = |dF|? B
resonant layer. There is also the ‘outer’ point of view. This f do do=m. (43
point of view is most completely expressed in the concept of
connection formulas first introduced by Sakuesial?® and
then further developed by Goossesisal?® and Goossens
and Ruderman’ This concept can be described as follows.
Let us assume that the quasi-resonant layer embracing t
guasi-resonant position is thin in comparison with the char
acteristic scale of the problefie.g., wavelength Then we
can use the method of matched asymptotic expansions to
describe_ the re_sonant wave. In accordance with this r_nethoq/_ SUMMARY AND CONCLUSIONS
we obtain the inner solution to the problem, which is the
solution in the quasi-resonant layer, and the outer solution, In this paper we studied the structure of linear Ative
which is the solution to the left and the right to the quasi-waves in quasi-resonant layers. We assumed that the equilib-
resonant layer and far enough from the quasi-resonant posium state is one-dimensional with the magnetic field in-
tion. Then we match the two solutions in the two overlapclined with respect to the direction of inhomogeneity. The
regions to the left and the right to the quasi-resonant layerangle 6 between the direction perpendicular to the inhomo-
where both the inner and the outer solutions are valid. geneity direction and the equilibrium magnetic field was as-

Since we consider a weakly dissipative plasma, dissipasumed to be small. The only dissipative process taken into
tion is important only in the quasi-resonant layer. The outermccount was finite resistivity. It was assumed that the coef-
solution can be obtained on the basis of ideal MHD. For dicient of magnetic diffusiory was small, i.e., that the mag-
one-dimensional equilibrium state, the linear ideal MHD netic Reynolds number was large. Sing# 0, there was no
equations can be reduced to two equations vioand P. exact Alfven resonance. However, due to the assumption that
When solving the outer problem, we can consider the quasi#<1, there was a quasi-resonant positpnwhere the Al-
resonant layer as a surface of discontinuity. Then the onlyvéen resonant condition is approximately satisfied and effi-
quantities we need to solve the outer problem are the jumpsient coupling of fast and Alfue waves occurs.
in the quantitiesv andP across the quasi-resonant layev] We showed that the perturbation of the total pressure
and[P]. The expressions fdw] and[P] are called the con- does not vary across the quasi-resonant layer embraging
nection formulas. In accordance with BEQ9), [P]=0. Us-  This result coincides with the similar result obtained previ-
ing Eq. (37) and Eq.(A6) from Appendix A we obtain ously for resonant layers in cage=0. We studied the be-

1<R¥3<p1,

2

da=ifw s2|F(s;A)|%ds (41)
27T — 0 ' )

—o0

Independence of the energy dissipated in the quasi-
resonant layer om is exactly what was claimed by Hansen
and Harrold?® However, they also claimed that their result
fyas obtained on the basis of linear ideal MHD, which must
be wrong because energy cannot be dissipated in ideal plas-
mas.
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havior of they- and zcomponents of the velocity, andw,

in the quasi-resonant layer. We showed that the behavior of

these quantities is decribed by the functidhgo;A) and

G(o;A), whereo is the dimensionless distance across the

guasi-resonant layer antl characterizes the relative impor- \

tance of resistivity and the magnetic field inclination. The - \ii .

functionsF(o;A) andG(o;A) are the generalizations of the S

F andG functions introduced by Goosseasal?® and coin- 0 ;

cide with them whem =0. AN |
We studied the behavior df(o;A) and G(o;A) for

different values of the parametdr. This behavior changes I i

fr(.)m monOton.IC to oscillatory when is increased. \.Ne ob- FIG. 5. The picture of the contours of the constant phaseand vy,) for

tain asymptotic formulas foF (o;A) andG(a;A) valid for «x>0. The contourys is auxiliary. The points, is the stationary point. The

A>1. Comparison of these formulas with the exact numerigashed line is an asymptote for the contgyr The arrows on the contours

cal results forA=15 shows that the asymptotic formulas y; andy, show the directions of the steepest descent. The arrows near the

give an excellent description &(o; A) except in the region ~contours show the direction of integration.

o= A, where the wave amplitudes are small anyway. For

large values ofA the period of the amplitude oscillation in

the quasi-resonant layer is of the ordet?s, and is inde-

pendent ofy, and the thickness of the quasi-resonant layeris (o3 A)=iAo~?signA. (AS)

of the orderA 8, and is proportional tay™*%, wheresx is  Then it follows from Eqs(A2) and(A5) and the asymptotic

the thickness of the dissipative layer wheér 0. This result  eyxpansion ofs(o;0) for largeo (see, e.g., Goossensal, 2
is in contrast to the corresponding result for the cds€d,  gquation 95 that

where the thickness of the resonant layer is proportional to
aa G(o;A)=—1In|o|— 4C— 3In3+J(A)+ i signoA),

We obtained connection formulas giving the jump in the (AB)
quantitiesP andw across the quasi-resonant layf] and  \yhere C~0.5722 is the Euler—Masceroni constant. It is
[w]. We showed thafP]=0 and[w] is given by the same straightforward to see tha{0)=0.
expression as in cage=0. We showed that the rate of wave When |A|=<1, asymptotic formulagAl) and (A6) are

energy dissipation in the quasi-resonant layer is also indeygjid for |o|>1. However, forA>1 the applicability condi-
pendent ofA. tions are different. They will be discussed in Appendix B.

We use integration by parts to obtain
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ported by a PPARC Advanced Fellowship. the functionF(o; A) for |A|— . Since changing the sign of
A results in the substitution df(o;A) by the complex co-

jugate quantityF* (o;A), we assume thah>0. The rela-
tion F(—o;—A)=F*(o;A) enables us to takd>0. To
evaluate the asymptotic behaviour we use the method of the

Let us study the asymptotic behavior of the functionssteepest discen(see, e.g., Nayfef and Bender and
F(o;A) and G(o;A) for |o|—. Integration by parts in Orszad"). We shall see in what follows that the analysis
Eq. (36) immediately gives strongly depends on the sign of Therefore, we study the

A -1 two casesg>0 ando<0, separately.

FloiA)=io™" (A1) (i) o>0. We make the substituticsi = As and drop the

Now we proceed to the functioG(o;A). We rewrite  prime to rewrite Eq(36) as
Eq. (38), determining this function as

APPENDIX A: ASYMPTOTIC BEHAVIOR OF
FUNCTIONS F(o;A) AND G(o;A) FOR LARGE |of

G(0;A)=G(a;0)+1(0;A)+I(A), (A2) F(U:A)=Afo exp[A°h(s)]ds (B1)
where with
[(o;A)= Jw exp(iossignA — 1s®) h(s)=i(ks—s?)— 1s%, k=oA "2 (B2)
0

In what follows we assume that<1, i.e.,o=<AZ?. The func-
tion h(s) has a critical poins, given by

s.=—i+(ik—1)? (B3)

J(A)= fw[l— exp —iAs? signA)]e‘53’3d—s. (A4) where we take the branch of the square root with the positi_ve
0 S real part. The contours of the stationary phase passing

ds
X [exp(—iAs?signA)—1] < (A3)
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throuth the stationary poirs., y,, and through the origin of
the coordinatesy,, are shown in Fig. 5. The arrows on these
contours show the directions of the steepest descent. Since

h(s) is an analytical function, we obtain
exp[A3h(s)]ds,

Lol L,
(B4)

where the contoury; is the straight vertical segment con-
necting the contoury; and the poiniS on the real axis, and
yf is the part of the contout, restricted by this segment
(see Fig. . The arrows near the contouss, y,, and y;

fsex;iAgh(s)]ds=
0

FIG. 6. The picture of the contour of the constant phagdor «.<x<0.
The contoury, is auxiliary. The dashed line is an asymptote for the contour

show the direction of integration. It is straightforward to y,. The arrow on the contouy; shows the direction of the steepest descent.
show that the horizontal line determined by the equationthe arrows near the contours show the direction of integration.

F(s)=—1 (F indicates the imaginary paris the asymptote
of the contoury, . It is shown by the dashed line in Fig. 5.
Hence, the length of the segmemt tends to 1 wherS
—oo, On the other hand, it is easy to see tifh(s)]
— —o as S—o (R indicates the real partTherefore

J exp[A3h(s)]ds—0 as S—x, (B5)
Y3
and we arrive at
| exetatn@1=n 1, (86)
where
Il(A)=f exp[A3h(s)]ds, (B7)
Y1
IZ(A)=f exp[A3h(s)]ds. (B8)
72

When A —o0, the main contributions to the integrals on
and vy, are given by the immediate vicinities sf and the

we obtain
R[3k+2i+2(ik—1)%3
=~k (4K*+3)[2(k*+1)¥*+3K?+2] !
X {2 k|[(1+«?)+1]M2
+2V7 (1+ k?)— 112+ 3k} L. (B14)

It immediately follows from Eq(B14) thatl,(A) is expo-
nentially small when<>0 andx~1, and can be neglected in
comparison withl ,(A). Hence, we have to retain(A) in
Eq. (B6) only whenk<1. Whenk<1,
3k+2i+2(ik—1)%%~ Fin?— § &3,

(B15)

and

(A=A "32exd — 2w+ A3(3ik?— £ K%)].
(B16)

origin of the coordinates, respectively. In these vicinities theFinally we obtain

function h(s) can be approximated by
h(s)=~ %[3K+ 2i+2(ik— 1)3/2] —(ik— 1)1/2(3_ Sc)z
(B9)
and by

h(s)~iks—is? (B10)

respectively. We keep the second term on the right-hand side

of Eq. (B10) to cover the case where<1. Using Eqs(B9)
and(B10), it is straightforward to obtain the asymptotic for-
mulas

|1(A)27Tl/2A_3/2(i K_l)_l/4

X exp{3A%[3k+2i+2(ik—1)%?]}, (B11)
IZ(A)=i1V3’2JOc exp(— kA%¥%s+is?)ds. (B12)
0
Using the formula
(l K_1)1/2:271/2{[(1+ KZ)_ 1]1/2
+i[(1+ %)+ 1]¥?sign«}, (B13

F(o;A)=7"A"2exp(— zai+ ;io® A~ = 0°A73)

+iA—1’2fo exp(— oA Y%s+is?)ds. (B17)
This asymptotic formula is valid foo>0 and A — .
(i) 0<0. In this case we once again use EB1) for
F(o;A). However, now the analysis is more complicated
because the picture of contours of the stationary phase bifur-
cates at k=k,=—(3+2v3)Y?>~—2.542. Therefore, the
asymptotical analysis is different far<x. and x> .

Let us first study the case where<k.. In Fig. 6 the
contour of the constant phasg passing through the origin
of the coordinates is shown. The horizontal If{es)=—1 is
an asymptote for this contour 8 s)—«. The arrow on the
contour shows the direction of the steepest descent. Using an
auxiliary contoury,, we show in the same way as in cdge
that

fx exp[A?’h(s)]ds:f exp[A3h(s)]ds, (B19)
0

Y1
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of the variation of o results in simplification of these
asymptotic formulas. First, we consider the interyal|
<A |n this interval the both formulas are reduced to

F(o;A)= 372\~ Y2 Mg L, (B22)

Hence, in spite that E§B17) was derived foir>0, and Eq.
(B19) for <0, both asymptotic expressions are valid in the
overlap regiono| <A Y2

The other interesting case i8<0, |o|>AY2 In this
case it immediately follows from EqB19) that

F(o;A)=io L (B23)

We obtain the same asymptotic behavior for large positive
where the direction of integration along the contouris  values ofo, however now it is valid only when the first term
shown by the arrow near the contour. RFbr—- the main  on the right-hand side of EqB17) is small comparing with
contribution to the integral on the right-hand side of Eq.the second one, i.e., whéa|>A. The asymptotic formula
(B18) arises from the vicinity of the origin of the coordi- (B23) coincides with Eq(A1) describing the asymptotic be-
nates. In this vicinity we can use the approximate expressiohavior of F(o;A) as|o|—=. We see that for largd this
for the functionh(s) given by Eq.(B10). Then, using Egs. asymptotic behavior takes place whr|>AY? for ¢<0;
(B1) and Eq.(B18), it is straightforward to obtain however, foro>0 it takes place only whefo|>A. It can

" be shown that the same is true for the asymptotic behavior of
F(U;A):—iA’l’zf exp(cA " Ys+is?)ds.  (B19)  G(o;A) as|o|—, given by Eq.(A10).
0 It is also instructive to describe the behavior of the func-
tion F(o;A) for AY¥2<o=<A. It can be seen from E4B17)
at in this interval the functiofr (o; A) oscillates with the
M2 and decays with the characteristic

FIG. 7. The same as Fig. 5, however fox «. .

Let us now proceed to the case whgrex. . In this case
the contour of the constant phase passing through the cool? X
dinate origin does not have the lifi§s)=—1 as an asymp- Period of the orde
tote. Therefore we have to also use the contour of the cor2c@leA-
stant phase passing through the stationary paspt
determined by Eq(B3). The two contours are shown in Fig.
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