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Structure of driven Alfve ´n waves with oblique magnetic field
and dissipation

M. S. Rudermana) and A. N. Wright
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Scotland, United Kingdom
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The quasi-resonant behavior of linear Alfve´n waves in one-dimensional magnetized weakly
resistive plasmas with the slightly inclined equilibrium magnetic field is studied. The analysis
concentrates on the behavior of they-component of the velocity,v, which is the component
perpendicular both to the inhomogeneity direction and to the equilibrium magnetic field, and the
z-component of the velocity,w, which is the component along the inhomogeneity direction. It is
shown that the behavior ofv andw is described by the functionsF(s;L) andG(s;L), wheres
is the dimensionless distance along the inhomogeneity direction and the parameterL characterizes
the relative importance of resistivity and the magnetic field inclination near the quasi-resonant
position. The functionsF(s;L) and G(s;L) are generalizations of theF and G functions
introduced by Goossens, Ruderman, and Hollweg@Sol. Phys.157, 75 ~1995!# and coincide with
them forL50. The behavior ofF(s;L) andG(s;L) is studied numerically for different values of
L. It changes from monotonic to oscillatory whenL is increased. It is shown that the connection
formulas giving the jumps ofw and the perturbation of the total pressure across the quasi-resonant
layer and the rate of energy dissipation in the quasi-resonant layer are independent of the inclination
angle. © 1999 American Institute of Physics.@S1070-664X~99!00703-X#
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I. INTRODUCTION

One of the most interesting phenomena related to pro
gation of linear magnetohydrodynamic~MHD! waves in in-
homogeneous plasmas is resonant coupling between g
waves and local Alfve´n or slow waves. In weakly dissipativ
plasmas, this resonant coupling occurs in thin resonant la
with the thickness determined by dissipative coefficien
The plasma motion in the resonant layers is characterize
large amplitudes and gradients. Resonant interaction of
magnetosonic waves and Alfve´n waves was suggested as
possible mechanism of excitation of ultra-low-frequen
~ULF! MHD waves in the magnetosphere by Chen a
Hasegawa1 and Southwood.2 Since these pioneering paper
this mechanism was remained popular for explaining exc
tion of ULF waves~see, e.g., Hughes3 and Wright4!.

Due to large gradients in resonant layers resonant M
waves can be efficiently damped even in weakly dissipa
plasmas. This property of resonant MHD waves inspi
Ionson5 to suggest resonant absorption of the wave energ
resonant layers as a possible mechanism of heating mag
structures in the solar corona. Since this original work, re
nant absorption has grown into a popular mechanism to
plain solar coronal heating~see, e.g., Kuperuset al.,6

Ionson,7 Davila,8 Hollweg,9 and Goossens10!. Recently, reso-

a!On leave of Institute for Problems in Mechanics, Russian Academy
Sciences, Moscow. Electronic mail: michaelr@dcs.st-and.ac.uk
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nant absorption has been considered as a possible cau
the observed loss of power of acoustic oscillations in
vicinity of sunspots ~Hollweg,11 Lou,12 Sakurai et al.,13

Goossens and Poedts,14 Goossens and Hollweg,15 and Stenuit
et al.16!.

The theory of linear resonant MHD waves in inhomog
neous plasmas is extremely complicated when the equ
rium quantities depend on all spatial coordinates~e.g.,
Wright and Thompson17 and references therein!. The as-
sumption that the equilibrium state depends on one spa
coordinate only results in a great simplification of the theo
In what follows we only consider the driven problem, whe
perturbations of all quantities harmonically oscillate with t
frequency of the external driver. Then in the case of a o
dimensional equilibrium, the linear MHD equations can
Fourier analyzed with respect to time and two spatial co
dinates. As a result, these equations are reduced to a s
ordinary differential equations. When the plasma is ideal,
one-dimensional equilibrium is planar, and the equilibriu
magnetic field is unidirectional and perpendicular to the
homogeneity direction, this set of equations contains a
gular point. The solutions describing resonant MHD wav
are singular at a resonant magnetic surface.

One-dimensional equilibria with the unidirectional ma
netic field perpendicular to the direction of inhomogene
are often used to model real magnetic configurations, suc
the penumbral regions in the solar photosphere or the Ea
f

© 1999 American Institute of Physics
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magnetotail. However, the assumption that the equilibri
magnetic field is perpendicular to the inhomogeneity dir
tion is highly unrealistic. In reality the magnetic field is on
approximately perpendicular. The propagation of MH
waves in one-dimensional planar equilibria with the uni
rectional oblique magnetic field was considered by Schw
and Bel.18 These authors showed that in the case of obliq
magnetic field there is no singularity in the linear ideal MH
equations no matter how small the angleu between the equi-
librium magnetic field and the direction perpendicular to t
inhomogeneity direction.

This result has an obvious physical interpretation. Wh
u is small ~in particular, zero!, strong transformation of the
energy of a fast magnetosonic wave that carries ene
across the magnetic surfaces into the energy of local Alf´n
oscillations occurs in the vicinity of the quasi-resonant s
face. Note that resonance occurs at a resonant magnetic
face whenu50. ForuÞ0, butuuu!1, the resonant condition
is satisfied only approximately and this approximate re
nance occurs on a surface that is not a magnetic surface
call this surface the ‘‘quasi-resonant surface.’’ Whenu50,
the energy of Alfve´n oscillations is accumulated in the vicin
ity of the resonant magnetic surface because Alfve´n waves
cannot carry energy across the magnetic surfaces. Sinc
the driven problem we assume that the driving is acting
an infinitely long period of time, this energy accumulatio
results in the infinite wave amplitude at the resonant m
netic surface. On the other hand, whenuÞ0, the Alfvén
waves carry the energy from the now quasi-resonant surf
so the wave amplitude is finite at the resonant position
the solution does not contain the singularity.

Inspired by Schwartz and Bel,18 Goossenset al.19 stud-
ied a more general situation where equilibrium quantit
depend on two spatial variables. These authors showed
in this case once again there is the resonant magnetic su
and solutions describing driven MHD waves do contain
singularity. So one-dimensional equilibria with the obliq
magnetic field are very exceptional from the point of view
the theory of resonant MHD waves in ideal plasmas.

Singularities in solutions describing resonant MH
waves appear because the approximation of ideal plasm
used. Real plasmas are always dissipative. Dissipation
moves singularities. However, when dissipation is small i
only important in a thin dissipative layer embracing the id
resonant position. In the limit of very weak dissipation t
amount of energy dissipated in the dissipative layer is in
pendent of dissipative coefficients. As a result, the amoun
dissipated energy can be correctly calculated even in the
proximation of ideal plasma using the Landau rule to p
the singularity.

While real equilibria are always three-dimensional, on
dimensional equilibria very often give a good first appro
mation to reality. A better understanding of what happe
when we pass from the case whereu50 to the case withu
Þ0 is very important for applications. Recently, this pro
lem has become increasingly interesting for studying w
propagation in the Earth’s magnetotail. Hansen and Haro20

considered the energy deposition into a quasi-resonant l
in a cold, ideal, one-dimensional plasma with the sligh
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oblique unidirectional magnetic field (uuu!1). These au-
thors made wrong conclusions that the amount of ene
dissipated in the quasi-resonant layer is independent ou,
and that the effect of finiteu is only important in the quasi-
resonant layer embracing the resonant position that is pre
whenu50.

Later Wright and Garman21 studied the same problem
These authors found strong mode conversion from the fas
Alfvén modes in the vicinity of a spatial quasi-resonant p
sition corresponding to the Alfve´n resonant position foru
50. However, they did not find any energy absorptio
which is not surprising at all since the plasma was ideal a
the solution nonsingular. The results by Wright a
Garman21 also show that, whenuÞ0, the solution differs
from that for u50 not only in the vicinity of the quasi-
resonant position, but also in a very large domain beyo
this position.

Hence, we have a peculiar situation. The energy abs
tion is identically zero whenuÞ0, while it is finite whenu
50. Obviously, this situation arises from using the ide
plasma approximation. Actually, bothuÞ0 and dissipation
remove the singularity in the linear MHD equations. S
from the physical point of view it is convenient to assum
that there is at least some small dissipation and then to c
sider the limitu→0. In doing so we can hope to reconci
the two cases:uÞ0 andu50.

The aim of the present paper is to study the wave beh
ior in the quasi-resonant layer in a weakly dissipative plas
with the slightly oblique equilibrium magnetic field. The pa
per is organized as follows. In the next section we derive
linear governing equations for quasi-resonant waves. In S
III we obtain the solution to these equations describing
wave behavior in the quasi-resonant layer. In Sec. IV we
the solution obtained in Sec. III to study the wave behav
in the quasi-resonant layer. Section V contains summary
conclusions.

II. DERIVATION OF GOVERNING EQUATIONS

We consider a cold resistive plasma with the equilibriu
densityr depending on thez-coordinate only in the Cartesia
coordinatesx,y,z. The equilibrium magnetic field is constan
and in thexz-plane, so that it can be written as

B5B~cosu,0,sinu! ~1!

with u the angle between the equilibrium magnetic field a
the x-axis ~see Fig. 1!. We choose such a direction of th
x-axis thatu.0. The linear momentum and induction equ
tions take the form

FIG. 1. The sketch of the equilibrium and coordinates. The magnetic fi
B5B(cosu,0,sinu) has constant strength. The density varies only withz, so
if u is nonzero there is a field-aligned density variation.
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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r
]v

]t
52¹P1

1

m
~B•¹!b, ~2!

]b

]t
5~B•¹!v2B¹•v1h¹2b. ~3!

Here v5(u,v,w) is the velocity,b5(bx ,by ,bz) is the per-
turbation of the magnetic field,m is the magnetic permiabil
ity of vacuum, andh is the coefficient of magnetic field
diffusion. P is the perturbation of the magnetic pressu
given by

P5
1

m
~B•b!. ~4!

In what follows, we assume that the magnetic Reyno
number is very large. This assumption enables us to use
sults obtained on the basis of ideal MHD when calculat
the last term on the right-hand side of Eq.~3!. As a result we
arrive at

]2b

]t2 5~B•¹!
]v

]t
2B¹•

]v

]t
1h¹2@~B•¹!v2B¹•v#. ~5!

Eliminating b from Eqs.~2! and ~5! we obtain

r
]3v

]t3 52¹
]2P

]t2 1
1

m
~B•¹!S ]

]t
1h¹2D @~B•¹!v2B¹•v#.

~6!

The y-component of this equation is

r
]3v
]t3 2

1

m
~B•¹!2S ]v

]t
1h¹2v D52

]3P

]t2]y
. ~7!

It follows from Eq. ~2! that

B•v50. ~8!

Taking the scalar product of Eq.~3! with B we obtain

1

m
B2¹•v52

]P

]t
1h¹2P. ~9!

Elimination of u andv from Eqs.~7!–~9! yields

F ]3

]t32
~B•¹!2

mr S ]

]t
1h¹2D GFrvA

2 S ]w

]z
2

]w

]x
tanu D

1
]P

]t
2h¹2PG5vA

2 ]4P

]t2]y2 , ~10!

wherevA
25B2/mr. We take thez-component of Eq.~6! and

use Eq.~9! to get

]3P

]t2]z
2

sinu

B
~B•¹!S ]2P

]t2 2h2¹4PD
52r

]3w

]t3 1
1

m
~B•¹!2S ]w

]t
1h¹2wD . ~11!

Equations~10! and~11! constitute the set of equations forw
andP.

Now we study the steady state of driven oscillatio
where all quantities oscillate with a real positive frequen
v. Since the equilibrium state is independent ofx andy, we
can Fourier analyze perturbations with respect to this v
Downloaded 01 Feb 2008 to 138.251.201.127. Redistribution subject to AI
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able. This consideration enables us to take perturbation
all quantities proportional to exp@i(kxx1kyy2vt)#. Then Eqs.
~7!, ~10!, and~11! are transformed to

v2v1vA
2 S sinu

d

dz
1 ikx cosu D 2S v1

ih

v

d2v
dz2 D5

vky

r
P,

~12!

Fv21vA
2 S sinu

d

dz
1 ikx cosu D 2S 11

ih

v

d2

dz2D G
3FrvA

2 S dw

dz
2 ikxw tanu D2 ivP2h

d2P

dz2 G
52 ivvA

2ky
2P, ~13!

dP

dz
2sinuS sinu

d

dz
1 ikx cosu D S P1

h2

v2

d4P

dz4 D
5 irvw1

irvA
2

v S sinu
d

dz
1 ikx cosu D 2S w1

ih

w

d2w

dz2 D .

~14!

When deriving these equations we have used the fact
resistivity is only important in the thin dissipative laye
where the characteristic scale in thez-direction is much
smaller than those in thex- and y-directions. This fact has
enabled us to use the approximationh¹2'hd2/dz2.

Equations~12!–~14! will be used in the next sections t
obtain the solution describing the wave behavior in a qua
resonant dissipative layer.

III. SOLUTION IN THE DISSIPATIVE LAYER

In what follows we restrict our analysis to the ca
where the magnetic field is quasi-horizontal, i.e.,u!1. This
assumption enables us to use the approximation sinu'u,
cosu'1. Then Eqs.~12!–~14! take the form

u2
d2v
dz2 12ikxu

dv
dz

1
v22vA

2kx
2

vA
2 v

1
ih

v S u
d

dz
1 ikxD 2 d2v

dz2 5
vky

rvA
2 P, ~15!

u2
d3w

dz3 12ikxu
d2w

dz2 1
v22vA

2kx
2

vA
2

dw

dz

1
ih

v S u
d

dz
1 ikxD 2 d3w

dz3

5
iv~v22vA

2k2!

rvA
4 P1

ivu2

rvA
2

d2P

dz2

2
2vkxu

rvA
2

dP

dz
1

hv2

rvA
4

3F11
ihvA

2

v3 S u
d

dz
1 ikxD 2 d2

dz2G d2P

dz2 , ~16!
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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dP

dz
2

uh2

v2 S u
d

dz
1 ikxD d4P

dz4

5 irvw1
irvA

2

v S u
d

dz
1 ikxD 2S w1

ih

v

d2w

dz2 D . ~17!

When deriving these equations, we have neglected obvio
small terms like, e.g.,u2dP/dz on the left-hand side of Eq
~17! or ikxu(v2/vA

22kx
2)w on the left-hand side of Eq.~16!.

Whenu50 andh50 Eqs.~15!–~17! are reduced to

r~v22vA
2kx

2!v5vkyP, ~18!

rvA
2~v22vA

2kx
2!

dw

dz
5 iv~v22vA

2k2!P, ~19!

v
dP

dz
5 ir~v22vA

2kx
2!w. ~20!

The solution to these equations is singular at the Alfve´n reso-
nant positionzA determined by the equation

vA~zA!5
v

ukxu
. ~21!

It is straightforward to show that in the vicinity ofzA this
solution is given by

P5const, v5
vkyP

rD~z2zA!
, ~22!

w52
ivky

2P

rD
lnuz2zAu1const. ~23!

When deriving Eqs.~22! and ~23!, we have used the Taylo
expansion

v22vA
2kx

25D~z2zA!, D52kx
2

dvA
2

dz
U

z5zA

. ~24!

This expansion is valid in the interval@zA2s,zA1s# with s
much smaller than the characteristic scale of the den
variation l eq.

Including the magnetic field inclination and/or resistivi
removes the Alfve´n singularity. We assumead hocthat the
both effects are only important in a thin resonant layer e
bracingzA . We shall check thisad hocassumption after we
obtain the solution in the quasi-resonant layer. Actually,
can consider two, in general, different characteristic scale
this layer. The first scale is the resistive scaledA . We obtain
it comparing the third and fourth terms on the left-hand s
of Eq. ~15! or ~16!. As a result we have

dA5Uvh

D U1/3

. ~25!

The second scale is the inclination scaledu . We obtain it
comparing the second and third terms on the left-hand
of Eq. ~15! or ~16!. The result is

du5Uuv2

kxD
U1/2

5uLu1/2dA , L5
u

kx
U v4

h2DU1/3

. ~26!

Sinceu>0 the sign ofL coinsides with the sign ofkx .
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When uLu!1 it is straightforward to see that the resi
tive terms on the left-hand sides of Eqs.~15! and~16! domi-
nate the first and second terms anduud f /dzu!ukxf u, wheref
is eitherv or w. Therefore, the first and second terms can
neglected in comparison with the fourth terms and in
latter ud/dz can be neglected in comparison withikx .

In what follows we assume thatukxu l eq5O(1). When
uLu*1, the second terms on the left-hand sides of Eqs.~15!
and ~16! are of the order of larger than the fourth term
However, the ratio of the first terms to the second terms
of the orderuuu1/2!1, so that the first terms can be neglecte
It is straightforward to show that the ratio ofud f /dz to ukxf u
is of the orderuu/kxl equ1/2;u1/2!1. Hence, for any value o
L we can simplify Eq.~15! to

D~z2zA!v1
2iv2u

kx

dv
dz

2 ihv
d2v
dz2 5

vky

r
P. ~27!

We cannot neglect the resistive term even whenL@1 be-
cause this is the only term providing dissipation.

The left-hand side of Eq.~16! can be rewritten in the
same simplified form as the left-hand side of Eq.~27!. How-
ever, before writing down the simplified version of Eq.~16!,
we consider its right-hand side. Simple estimates show
the first term on the right-hand side is much larger that
other terms. In addition, due to the resonant condition~21!
we can use the approximationv22vA

2k2'2vA
2ky

2. As a re-
sult, the simplified form of Eq.~16! is

D~z2zA!
dw

dz
1

2iv2u

kx

d2w

dz2 2 ihv
d3w

dz3 5
ivky

2

r
P. ~28!

It is straightforward to show that the ratios of all terms
Eq. ~17! to the first term on the left-hand side are small. Th
observation leads to the approximate equationdP/dz'0, or

P5const. ~29!

Hence, the right-hand sides of Eqs.~27! and ~28! are con-
stant.

It is convenient to introduce the new dimensionless va
ables5(z2zA)/dA . Then we rewrite Eqs.~27! and~28! as

d2v
ds222L

dv
ds

1 isv signD5
ivky

ruDudA
P, ~30!

d3w

ds322L
d2w

ds2 1 is signD
dw

ds
5

vky

ruDu
P. ~31!

To solve these equations we follow Rudermanet al.22 and
Tirry and Goossens23 and introduce the Fourier transform
with respect tos,

f̂ ~s!5E
2`

`

f ~s!e2 issds. ~32!

Applying this transform to Eq.~30!, we obtain

dv̂
ds

1signD~2iLs1s2!v̂52
2p ivkyP

rDdA
d~s!. ~33!

The solution to this equation vanishing asusu→` is
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. The real and imaginary part
of the functionsF(s;L) andG(s;L)
versus dimensionless coordinates
across the quasi-resonant layer forL
50.
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v̂52
p ivkyP

ruDudA
@11sign~Ds!#

3expF2signDS iLs21
1

3
s3D G . ~34!

Then the inverse Fourier transform yields

v52
ivkyP

ruDudA
F~s;L!, ~35!

where theF-function is given by

F~s;L!5E
0

`

exp@ i ~ss2Ls2!signD2 1
3 s3#ds. ~36!

The expression fordw/ds is obtained by substitution o
vky

2P/ruDu for ivkyP/ruDudA in Eq. ~35!. We then integrate
this expression to arrive at

w5
ivky

2P

rD
G~s;L!1const, ~37!

with the G-function given by

G~s;L!5E
0

` eiss signD21

s

3exp~2 iLs2 signD2 1
3 s3!ds. ~38!

When L50, the functionsF(s;L) and G(s;L) coincide
with the functions F(s) and G(s) first introduced by
Boris,24 and then used by Mok and Einaudi25 and Goossens
et al.26 to describe resonant MHD waves in dissipative lay
~see also the review paper by Goossens and Ruderman27!. In
the next section we use Eqs.~35!–~38! to study the depen
dence of the behavior of resonant Alfve´n waves in the quasi
resonant layer on the inclination parameterL.
Downloaded 01 Feb 2008 to 138.251.201.127. Redistribution subject to AI
s

IV. WAVE BEHAVIOR IN THE QUASI-RESONANT
LAYER

When u50, ideal MHD predicts thatv and by have
1/(z2zA) singularities in the vicinity of the resonant pos
tion, w and bz have logarithmic singularities, and all othe
quantities are regular. In what follows we concentrate
quantities that are singular in ideal MHD whenu50. It can
be shown thatby is proportional tov, andbz is proportional
to w. Hence it is enough to study the behavior ofv and w
only. Since, in accordance with Eqs.~35! and ~37!, the be-
havior of these quantities is determined by the the functi
F(s;L) andG(s;L), in this section we study the behavio
of these functions. In Figs. 2–4 the dependencies of the
and imaginary parts ofF(s;L) andG(s;L) on s are shown
for L50, L53 and L515, respectively. As it has bee
noted, forL50 F(s;L) and G(s;L) coincide with theF
andG functions in Goossenset al.26 Correspondingly, Fig. 2
coincides with Figs. 1 and 2 in Goossenset al.26 In Figs. 2–4
we see the transition from the monotonic behavior of
wave amplitude in the quasi-resonant layer forL50 to the
oscillatory behavior forL515. Since the functionF(s;L)
determines the behavior of the most singular quantityv, cor-
responding to the Alfve´n waves, we calculated in Appendi
B its asymptotic behavior forL→`. The dotted lines in Fig.
4 show the real and imaginary parts ofF(s;L) given by
asymptotic formulas~66! and~68!. There is some difference
between asymptotic and exact results for large positive
ues ofs where the wave amplitude is small anyway. How
ever, for moderate positive values ofs and for all negative
values, coincidence of the asymptotic and the exact resul
excellent, so the solid and dotted curves are indistinguisha
for these values ofs.

In accordance with Eq.~71!, for large values ofL, the
amplitude of oscillations near the quasi-resonant positionzA
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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FIG. 3. The same as Fig. 2, howeve
for L53.
an

lly

is
e
la

f
e

e

nce
the
ss
in

on

e
t of

l to
ng
e

decays asL21/2 whenL is increased. The resonant layer c
be divided into the left part (z,zA) and the right part (z
.zA). In the left part, the amplitude behaves monotonica
and reaches its asymptotic behavior (z2zA)21 at the dis-
tance of the orderL1/2dA . So, the thickness of the left part
of the orderL1/2dA . In the right part, the behavior of th
wave amplitude is oscillatory with the characteristic oscil
tion period of the orderL1/2dA . The amplitude of oscilla-
tions exponentially decreases with the distance fromzA on
the scale of the orderLdA . At the distances of the order o
a few LdA , the wave amplitude reaches its asymptotic b
havior (z2zA)21, so the quantityLdA can be taken as th
Downloaded 01 Feb 2008 to 138.251.201.127. Redistribution subject to AI
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thickness of the right part of the quasi-resonant layer. Si
the thickness of the right part is much larger than that of
left part, the quantityLdA can also be taken as the thickne
of the whole dissipative layer. It is interesting to note that,
accordance with Eq.~26!, the quantityL1/2dA equalsdu ,
which is independent of the coefficient of magnetic diffusi
h, while LdA is proportional toh21/3. Hence, for largeL
~i.e., smallh! the characteristic period of oscillations of th
wave amplitude in the quasi-resonant layer is independen
h, while the thickness of the resonant layer is proportiona
h21/3. The latter result is in contrast with the correspondi
result for the thickness of the resonant layer in the casu
r
-
-

FIG. 4. The same as Fig. 2, howeve
for L515. The dotted lines in the up
per panels show the asymptotical ap
proximation forF(s;L).
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50, where this thickness is proportional toh1/3 ~e.g., Goos-
senset al.26!.

Now we can discuss thead hocassumption made in Sec
III that the thickness of the quasi-resonant layer is mu
smaller than the characteristic scale of inhomogeneityl eq.
Whenu50 this assumption is reduced todA! l eq and, since
dA;h1/3, it is always satisfied for the large values of th
magnetic Reynolds number Rm . However, whenuÞ0, the
situation is more complicated. When Rm is very large, the
characteristic thickness of the quasi-resonant layer isLdA ,
so we obtain the restrictionLdA! l eq. Together with the
demand that Rm be large, it gives

1!Rm
1/3!u21. ~39!

When deriving this condition, we have used the estim
uDu;v2/ l eq and assumed thatukxu l eq;1. For instance, in the
solar photosphere typically Rm;106, and restriction~39! is
satisfied only foru!1°.

It is instructive to compare Fig. 4 with Figs. 4 and 5 b
Wright and Garman21 showing the picture of transformatio
of the incoming fast wave into the outgoing Alfve´n wave.
The two upper panels of our Fig. 4 qualitatively coinci
with the upper panels of Figs. 4 and 5 by Wright a
Garman21 except their left regions far from the quas
resonant position where there is an incoming wave.

As we have seen there is strong qualitative difference
the behavior of the quasi-resonant waves in the two ca
L&1 and L@1. However, we have found this differenc
studying the problem from the ‘‘inner’’ point of view, i.e.
when we are interested in the wave behavior in the qu
resonant layer. There is also the ‘outer’ point of view. Th
point of view is most completely expressed in the concep
connection formulas first introduced by Sakuraiet al.28 and
then further developed by Goossenset al.26 and Goossens
and Ruderman.27 This concept can be described as follow
Let us assume that the quasi-resonant layer embracing
quasi-resonant position is thin in comparison with the ch
acteristic scale of the problem~e.g., wavelength!. Then we
can use the method of matched asymptotic expansion
describe the resonant wave. In accordance with this met
we obtain the inner solution to the problem, which is t
solution in the quasi-resonant layer, and the outer solut
which is the solution to the left and the right to the qua
resonant layer and far enough from the quasi-resonant p
tion. Then we match the two solutions in the two overl
regions to the left and the right to the quasi-resonant la
where both the inner and the outer solutions are valid.

Since we consider a weakly dissipative plasma, diss
tion is important only in the quasi-resonant layer. The ou
solution can be obtained on the basis of ideal MHD. Fo
one-dimensional equilibrium state, the linear ideal MH
equations can be reduced to two equations forw and P.
When solving the outer problem, we can consider the qu
resonant layer as a surface of discontinuity. Then the o
quantities we need to solve the outer problem are the ju
in the quantitiesw andP across the quasi-resonant layer,@w#
and @P#. The expressions for@w# and @P# are called the con-
nection formulas. In accordance with Eq.~29!, @P#50. Us-
ing Eq. ~37! and Eq.~A6! from Appendix A we obtain
Downloaded 01 Feb 2008 to 138.251.201.127. Redistribution subject to AI
h

e

in
s:

i-

f

.
he
r-

to
d,

n,
-
si-

r,

a-
r
a

i-
ly
ps

@w#5 lim
s→`

$w~s!2w~2s!%52
pvky

2P

ruDu
. ~40!

The remarkable property of this second connection form
is that @w# is independent ofh and u. Hence, from the
‘‘outer’’ point of view the two cases,L&1 andL@1, are
absolutely indistinguishable.

Let us show that the amount of energy dissipated in
quasi-resonant layer over one period is independent ofh and
u. Wright and Allan29 showed that the amount of energ
dissipated in a resonant layer per wave period in thex- and
y-directions is proportional to*2`

` udF/dsu2ds with the pro-
portionality coefficient independent ofh. These authors con
sidered the caseu50, however, it is straighforward to chec
that their calculations are also valid foruÞ0. The coefficient
of proportionality is now independent of bothh and u.
Therefore, to show that the amount of energy dissipated
the quasi-resonant layer is independent ofh and u, it is
enough to show that*2`

` udF/dsu2ds is independent ofL.
Using the Parseval identity, we obtain

E
2`

` UdF

dsU
2

ds5
1

2p E
2`

`

s2uF̂~s;L!u2ds. ~41!

In accordance with Eqs.~34! and ~35!

F̂~s;L!5p@11sign~Ds!#exp[2signD~ iLs21 1
3 s3!].

~42!

Substituting Eq.~42! into Eq. ~41! we immediately arrive at

E
2`

` UdF

dsU
2

ds5p. ~43!

Independence of the energy dissipated in the qu
resonant layer onu is exactly what was claimed by Hanse
and Harrold.20 However, they also claimed that their resu
was obtained on the basis of linear ideal MHD, which mu
be wrong because energy cannot be dissipated in ideal p
mas.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the structure of linear Alfve´n
waves in quasi-resonant layers. We assumed that the equ
rium state is one-dimensional with the magnetic field
clined with respect to the direction of inhomogeneity. T
angleu between the direction perpendicular to the inhom
geneity direction and the equilibrium magnetic field was
sumed to be small. The only dissipative process taken
account was finite resistivity. It was assumed that the co
ficient of magnetic diffusionh was small, i.e., that the mag
netic Reynolds number was large. SinceuÞ0, there was no
exact Alfvén resonance. However, due to the assumption
u!1, there was a quasi-resonant positionzA where the Al-
fvén resonant condition is approximately satisfied and e
cient coupling of fast and Alfve´n waves occurs.

We showed that the perturbation of the total press
does not vary across the quasi-resonant layer embracingzA .
This result coincides with the similar result obtained pre
ously for resonant layers in caseu50. We studied the be-
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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havior of they- andz-components of the velocity,v andw,
in the quasi-resonant layer. We showed that the behavio
these quantities is decribed by the functionsF(s;L) and
G(s;L), wheres is the dimensionless distance across
quasi-resonant layer andL characterizes the relative impo
tance of resistivity and the magnetic field inclination. T
functionsF(s;L) andG(s;L) are the generalizations of th
F andG functions introduced by Goossenset al.26 and coin-
cide with them whenL50.

We studied the behavior ofF(s;L) and G(s;L) for
different values of the parameterL. This behavior change
from monotonic to oscillatory whenL is increased. We ob
tain asymptotic formulas forF(s;L) andG(s;L) valid for
L@1. Comparison of these formulas with the exact nume
cal results forL515 shows that the asymptotic formula
give an excellent description ofF(s;L) except in the region
s*L, where the wave amplitudes are small anyway. F
large values ofL the period of the amplitude oscillation i
the quasi-resonant layer is of the orderL1/2dA and is inde-
pendent ofh, and the thickness of the quasi-resonant laye
of the orderLdA and is proportional toh21/3, wheredA is
the thickness of the dissipative layer whenu50. This result
is in contrast to the corresponding result for the caseu50,
where the thickness of the resonant layer is proportiona
h1/3.

We obtained connection formulas giving the jump in t
quantitiesP and w across the quasi-resonant layer,@P# and
@w#. We showed that@P#50 and@w# is given by the same
expression as in caseu50. We showed that the rate of wav
energy dissipation in the quasi-resonant layer is also in
pendent ofL.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
FUNCTIONS F„s; L… AND G„s; L… FOR LARGE zsz

Let us study the asymptotic behavior of the functio
F(s;L) and G(s;L) for usu→`. Integration by parts in
Eq. ~36! immediately gives

F~s;L!. is21. ~A1!

Now we proceed to the functionG(s;L). We rewrite
Eq. ~38!, determining this function as

G~s;L!5G~s;0!1I ~s;L!1J~L!, ~A2!

where

I ~s;L!5E
0

`

exp~ iss signD2 1
3 s3!

3@exp~2 iLs2 signD!21#
ds

s
, ~A3!

J~L!5E
0

`

@12exp~2 iLs2 signD!#e2s3/3
ds

s
. ~A4!
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We use integration by parts to obtain

I ~s;L!. iLs22 signD. ~A5!

Then it follows from Eqs.~A2! and~A5! and the asymptotic
expansion ofG(s;0) for larges ~see, e.g., Goossenset al.,26

equation 95! that

G~s;L!.2 lnusu2 2
3 C2 1

3 ln 31J~L!1 1
2 p i sign~sL!,

~A6!

where C'0.5722 is the Euler–Masceroni constant. It
straightforward to see thatJ(0)50.

When uLu&1, asymptotic formulas~A1! and ~A6! are
valid for usu@1. However, forL@1 the applicability condi-
tions are different. They will be discussed in Appendix B

APPENDIX B: ASYMPTOTIC BEHAVIOR OF
FUNCTION F„s; L… FOR LARGE L

In this Appendix we study the asymptotic behavior
the functionF(s;L) for uLu→`. Since changing the sign o
D results in the substitution ofF(s;L) by the complex co-
jugate quantityF* (s;L), we assume thatD.0. The rela-
tion F(2s;2L)5F* (s;L) enables us to takeL.0. To
evaluate the asymptotic behaviour we use the method of
steepest discent~see, e.g., Nayfeh,30 and Bender and
Orszag31!. We shall see in what follows that the analys
strongly depends on the sign ofs. Therefore, we study the
two cases,s.0 ands,0, separately.

~i! s.0. We make the substitutions85Ls and drop the
prime to rewrite Eq.~36! as

F~s;L!5LE
0

`

exp@L3h~s!#ds ~B1!

with

h~s!5 i ~ks2s2!2 1
3 s3, k5sL22. ~B2!

In what follows we assume thatk&1, i.e.,s&L2. The func-
tion h(s) has a critical pointsc given by

sc52 i 1~ ik21!1/2, ~B3!

where we take the branch of the square root with the posi
real part. The contours of the stationary phase pass

FIG. 5. The picture of the contours of the constant phase~g1 and g2) for
k.0. The contourg3 is auxiliary. The pointsc is the stationary point. The
dashed line is an asymptote for the contourg1 . The arrows on the contours
g1 andg2 show the directions of the steepest descent. The arrows nea
contours show the direction of integration.
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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throuth the stationary pointsc , g1 , and through the origin of
the coordinates,g2 , are shown in Fig. 5. The arrows on the
contours show the directions of the steepest descent. S
h(s) is an analytical function, we obtain

E
0

S

exp@L3h~s!#ds5S E
g1

S
1E

g2

1E
g3

D exp@L3h~s!#ds,

~B4!

where the contourg3 is the straight vertical segment con
necting the contourg1 and the pointS on the real axis, and
g1

S is the part of the contourg1 restricted by this segmen
~see Fig. 5!. The arrows near the contoursg1 , g2 , andg3

show the direction of integration. It is straightforward
show that the horizontal line determined by the equat
F(s)521 ~F indicates the imaginary part! is the asymptote
of the contourg1 . It is shown by the dashed line in Fig. 5
Hence, the length of the segmentg3 tends to 1 whenS
→`. On the other hand, it is easy to see thatR[h(s)]
→2` as S→` (R indicates the real part!. Therefore

E
g3

exp@L3h~s!#ds→0 as S→`, ~B5!

and we arrive at

E
0

`

exp@L3h~s!#5I 1~L!1I 2~L!, ~B6!

where

I 1~L!5E
g1

exp@L3h~s!#ds, ~B7!

I 2~L!5E
g2

exp@L3h~s!#ds. ~B8!

WhenL→`, the main contributions to the integrals ong1

and g2 are given by the immediate vicinities ofsc and the
origin of the coordinates, respectively. In these vicinities
function h(s) can be approximated by

h~s!' 1
3 @3k12i 12~ ik21!3/2#2~ ik21!1/2~s2sc!

2

~B9!

and by

h~s!' iks2 is2, ~B10!

respectively. We keep the second term on the right-hand
of Eq. ~B10! to cover the case wherek!1. Using Eqs.~B9!
and~B10!, it is straightforward to obtain the asymptotic fo
mulas

I 1~L!.p1/2L23/2~ ik21!21/4

3exp$ 1
3 L3@3k12i 12~ ik21!3/2#%, ~B11!

I 2~L!5 iL23/2E
0

`

exp~2kL3/2s1 is2!ds. ~B12!

Using the formula

~ ik21!1/25221/2$@~11k2!21#1/2

1 i @~11k2!11#1/2signk%, ~B13!
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e

de

we obtain

R@3k12i 12~ ik21!3/2#

52k4~4k213!@2~k211!3/213k212#21

3$21/2uku@~11k2!11#1/2

121/2@~11k2!21#1/213k%21. ~B14!

It immediately follows from Eq.~B14! that I 1(L) is expo-
nentially small whenk.0 andk;1, and can be neglected i
comparison withI 2(L). Hence, we have to retainI 1(L) in
Eq. ~B6! only whenk!1. Whenk!1,

3k12i 12~ ik21!3/2' 3
4 ik22 1

8 k3, ~B15!

and

I 1~L!.p1/2L23/2exp@2 1
4 p i 1L3~ 1

4 ik22 1
24 k3!#.

~B16!

Finally we obtain

F~s;L!.p1/2L21/2exp~2 1
4 p i 1 1

4 is2L212 1
24 s3L23!

1 iL21/2E
0

`

exp~2sL21/2s1 is2!ds. ~B17!

This asymptotic formula is valid fors.0 andL→`.
~ii ! s,0. In this case we once again use Eq.~B1! for

F(s;L). However, now the analysis is more complicat
because the picture of contours of the stationary phase b
cates at k5kc[2(312))1/2'22.542. Therefore, the
asymptotical analysis is different fork,kc andk.kc .

Let us first study the case wherek,kc . In Fig. 6 the
contour of the constant phaseg1 passing through the origin
of the coordinates is shown. The horizontal lineF(s)521 is
an asymptote for this contour asR(s)→`. The arrow on the
contour shows the direction of the steepest descent. Usin
auxiliary contourg2 , we show in the same way as in case~i!
that

E
0

`

exp@L3h~s!#ds5E
g1

exp@L3h~s!#ds, ~B18!

FIG. 6. The picture of the contour of the constant phaseg1 for kc,k,0.
The contourg2 is auxiliary. The dashed line is an asymptote for the conto
g1 . The arrow on the contourg1 shows the direction of the steepest desce
The arrows near the contours show the direction of integration.
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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where the direction of integration along the contourg1 is
shown by the arrow near the contour. ForL→` the main
contribution to the integral on the right-hand side of E
~B18! arises from the vicinity of the origin of the coord
nates. In this vicinity we can use the approximate express
for the functionh(s) given by Eq.~B10!. Then, using Eqs.
~B1! and Eq.~B18!, it is straightforward to obtain

F~s;L!.2 iL21/2E
0

`

exp~sL21/2s1 is2!ds. ~B19!

Let us now proceed to the case wherex,xc . In this case
the contour of the constant phase passing through the c
dinate origin does not have the lineT(s)521 as an asymp-
tote. Therefore we have to also use the contour of the c
stant phase passing through the stationary pointsc

determined by Eq.~B3!. The two contours are shown in Fig
7 by the curvesg2 and g1 , respectively. The asymptoti
analysis is similar to that in case~i!. Using the auxiliary
contour g3 , we arrive at Eq.~B6! with I 1(L) and I 2(L)
determined by Eqs.~B7! and ~B8!. Once again the main
contributions toI 1(L) andI 2(L) come from small vicinities
of the stationary pointsc and the origin of the coordinates. I
the vicinity of sc the functionh(s) can be approximated b
Eq. ~B9!. Since nowuku;1, we can use the approximatio
h(s)' iks in the vicinity of the coordinate origin. Thes
observations enable us to obtain the asymptotic express

I 2~L!5 iL23k21 ~B20!

for I 2(L), and the same asymptotic expression~B11! for
I 1(L). Using Eq.~B3!, we obtain

R@3k12i 12~ ik21!3/2#

53k2221/2@~11k2!21#1/21221/2k@~11k2!11#1/2

,0, ~B21!

so that I 1(L) is exponentially small asL→` and can be
neglected in comparison withI 2(L). As a result we obtain
F(s;L).2 is21. Since this asymptotic expression follow
from Eq. ~B19! when usu*L1/2 (uku*L23/2), we conclude
that asymptotics~B19! is uniformly valid for s,0, usu
&L2 (uku&1).

Asymptotic formulas~B17! and ~B19! are uniformly
valid in a very wide interval of variation ofs, namely for
usu&L2. However, these formulas are relatively comp
cated because they contain integrals. Narrowing the inte

FIG. 7. The same as Fig. 5, however fork,kc .
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of the variation of s results in simplification of these
asymptotic formulas. First, we consider the intervalusu
!L1/2. In this interval the both formulas are reduced to

F~s;L!. 1
2 p1/2L21/2e2p i /42sL21. ~B22!

Hence, in spite that Eq.~B17! was derived fors.0, and Eq.
~B19! for s,0, both asymptotic expressions are valid in t
overlap regionusu!L1/2.

The other interesting case iss,0, usu@L1/2. In this
case it immediately follows from Eq.~B19! that

F~s;L!. is21. ~B23!

We obtain the same asymptotic behavior for large posit
values ofs, however now it is valid only when the first term
on the right-hand side of Eq.~B17! is small comparing with
the second one, i.e., whenusu@L. The asymptotic formula
~B23! coincides with Eq.~A1! describing the asymptotic be
havior of F(s;L) as usu→`. We see that for largeL this
asymptotic behavior takes place whenusu@L1/2 for s,0;
however, fors.0 it takes place only whenusu@L. It can
be shown that the same is true for the asymptotic behavio
G(s;L) as usu→`, given by Eq.~A10!.

It is also instructive to describe the behavior of the fun
tion F(s;L) for L1/2&s&L. It can be seen from Eq.~B17!
that in this interval the functionF(s;L) oscillates with the
period of the orderL1/2 and decays with the characterist
scaleL.
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