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The linear resonant excitation of Alfven waves in a cold plasma permeated by a nonuniform 
magnetic field is considered. The equilibrium magnetic field is irrotational and possesses an 
invariant coordinate perpendicular to the direction of the field. By solving for the coefficients in 
a Generalized Frobenius Series the regular and singular solutions may be generated. The 
singular solution is logarithmic and produces a net absorption of energy at the resonant field 
line. The efficiency of coupling between the fast mode and the resonant Alfven mode is 
determined by the following overlap integral along the resoriant field line, f (S{3r b"olh{3)dl; S{3r 
is the resonant eigenfunction, bro is the compressional/parallel magnetic field perturbation, and 
h{3 is proportional to the separation of background lines of force in the invariant direction. The 
amplitude of the singular solution is proportional to this integral, while the rate of energy 
absorption at the resonance is proportional to its square. It is also shown how the analytical 
solution at the resonance may be used to avoid problems encountered in numerical solutions. 

I. INTRODUCTION 

The coupling of different MHD (magnetohydrody­
namic) wave modes in inhomogeneous media is a funda­
mental process of interest to all plasma physicists and is 
important for an understanding of solar, magnetospheric, 
and laboratory plasmas. The slow, Alfven and fast modes 
may all couple with one another. It is the coupling of the 
fast and Alfven mode which has received most attention in 
the literature, and is the problem which we address in this 
paper. 

In both solar and laboratory plasmas the absorption of 
fast mode energy by spatially localized Alfven waves is 
part of a mechanism for heating the plasma. Thus wave 
coupling can help achieve the high temperatures required 
for laboratory fusion, and can aid our understanding of the 
unusually high temperatures found in the solar corona. In 
a magnetospheric context the heating aspect of the cou­
pling process is not so important, and attention is focused 
upon the structure of the Alfven waves that may be excited 
from a fast mode. Indeed, it is thought that the properties 
of magnetic pulsations may be understood in terms of the 
coupling process. 

This paper concentrates upon the resonant coupling of 
fast and Alfven waves, which occurs when the frequency of 
the fast mode matches one of the natural Alfven frequen­
cies. In a nonuniform medium the natural Alfven frequen­
cies vary from one field line to another; thus the set of field 
lines which experience resonant Alfven wave excitation is 
discrete, and in a simple system would form a sheet. 

Previous studies have employed a variety of simplifi­
cations; often the dependence on ignorable coordinates is 
factored out and a harmonic time dependence is assumed 
which leaves an ordinary differential equation with a sin-

gularity at the resonant sheet. 1-3 Other studies have relaxed 
the assumption of harmonic time dependence, but still con­
sider simple magnetic geometries. These partial differential 
equation problems are generally solved numerically4-9 al­
though analytical methods are sometimes tractable. 10 

Modeling has also been extended from simple geome­
tries to irlclude more general field geometries. In an effort 
to model magnetospheric phenomena the three­
dimensional dipole field has received much attention from 
numerical and analytical calculations. II- 13 More general 
(two dimensional) systems have also been considered an­
alytically for a cold plasma 14-18 and also for warm 
plasmas. 15,19,20 

In this paper, we focus upon the resonant excitation of 
Alfven waves in a cold plasma permeated by a curl-free 
background magnetic field. The magnetic field is quite ar­
bitrary, save that it possess an ignorable coordinate ({3) 
and have no component of the background field along that 
direction (B· P=O). For example, a poloidal field will sat­
isfy these requirements, and we would identify the toroidal 
or azimuthal coordinate with (3. 

The dependence upon the ignorable coordinate and 
time is factored out as exp[i(kpf3-mt)]; The wave number 
in the {3 direction is k{3' The governing equations may be 
reduced to two coupled partial differential equations, in 
contrast to the single ordinary differential equation found 
in simpler systems. The natural Alfven frequencies in such 
a two-dimensional system depend only upon the poloidal 
transverse coordinate a. Thus the resonant singularity in 
the partial differential problem occurs on a flux surface 
labeled by constant a. The existence of a singularity in the 
pair of coupled PDE's (partial differential equations) is 
not obvious from a cursory inspection of the equations. 
Indeed, Hansen and Goertz21 (hereafter HG) claim that 
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"field line resonances" and the associated singularities are 
not present in the coupled PDE's we study here-a point 
to which we return. 

In simple systems (governed by an ordinary differen­
tial equation: ODE) the singularity may be treated by 
means of a Frobenius series at the resonant 
singularity.2,3,22,23 Whilst there is a well-defined procedure 
for constructing the two independent Frobenius series in 
these problems, there is no standard recipe to follow for the 
treatment of singularities in the partial differential equation 
system. One approach is to assume a priori an ordering 
between the width of the resonant sheet and the amplitude 
of the wave fields. Such an approach draws upon experi­
ence gained from simpler problems in selecting an appro­
priate ordering. Nevertheless, this method can demonstrate 
that the resonance is a logarithmic singularity;1l,15 how­
ever, this corresponds to only the first term in the singular 
solution. There is a second (regular) solution which can­
not be determined by this approach. 

In order to match given boundary conditions to the 
solution in the vicinity of the resonant singularity it is 
necessary to know the two independent solutions to the 
governing equations. If only one solution is known we can­
not satisfy general boundary conditions. 

HG criticize the method employed in studies such as 
Ref. 11 or Ref. 15 claiming that their solutions are incor­
rect, owing to neglect of some terms in an expansion. HG 
employ an alternative expansion procedure and find 
nonsingular solutions to the coupled PDE problem, con­
cluding that nonuniformity along the background field de­
stroys the singular nature of the waves. 

Recently it has been demonstrated how a gl:meralized 
Frobenius series may be derived which will give all of the 
terms in both regular and singular solutions at the singu­
larity in a system of partial differential equations.24 The 
systematic method devised there was applied to a medium 
containing a uniform magnetic field and a cold plasma 
whose density varied in the (x,z) plane, the field being 
aligned with z. In this paper, we generalize the method 
further to describe resonances in more general background 
magnetic-field geometries. 

Our conclusions are contrary to those of HG; we find 
that there is a logarithmic singularity in the solution even 
when the background medium varies along the equilibrium 
field. Our calculation, which makes no a priori assump­
tions, vindicates the findings of a singular solution in stud­
ies such as Ref. 11 and contradicts the claims made by HG. 
We have submitted a comment25 on the work of HG in 
which we demonstrate errors in their analysis. 

The paper is structured as follows. Section II describes 
the magnetic field model and presents the governing equa­
tions. Section III describes the Alfven eigenmodes and 
eigenfrequencies and some of their properties such as or­
thogonality and completeness. The Generalized Frobenius 
Series is presented in Sec. IV, while Sec. V considers the 
continuation of logarithmic terms across the resonant layer 
and the associated absorption of energy. Section VI de­
scribes how our series solution may be used in conjunction 
with a numerical solution. Our results are discussed and 
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summarized in Sec. VII which concludes the main text. 
Much of the lengthy algebra involved in our calculation is 
reserved for the appendices. Appendix A deduces the in­
dices for the regular and singular series, while Appendix B 
uses these indices to generate recursion relations and cal­
culates the first few terms in both series. 

II. GOVERNING EQUATIONS 

The coordinate system used throughout this paper is 
an orthogonal curvilinear one based upon the magnetic 
geometry. We define three spatial coordinates (a,{3,r) and 
let r be parallel to the local background magnetic-field 
direction everywhere. The transverse coordinates (a,fJ) are 
constant on any background line of force and are similar to 
Euler potentials or Clebsch variables. The background 
magnetic field is assumed to be solenoidal and irrotational, 
requiring 

Bhahp=f(a,{3) , 

Bhy=g(r), 

(1) 

(2) 

where f and g are arbitrary functions of their arguments 
and the scale factors hi are equal to llVi, where i=a,{3,r. A 
physical interpretation of the scale factors may be realized 
by notin~ that a real-space element dr is equal to 
aha da + f3hpdf3 + thy dr. These results are standard prop­
erties of such a coordinate system.26 Similar coordinate 
systems have facilitated earlier investigations of related 
problems.27- 31 

In the cold plasma limit the entire wave field can be 
described in terms of the transverse plasma displacements 
Sa and Sp. Factoring out a dependence of exp[i(ktP-mt)] 
from all perturbations, the linearized momentum and time­
integrated induction equations may be combined to give 
the following inhomogeneous wave equations: 

(3a) 

and 

a (hfJ a ) 2 B ar hahy ' ar (SphaB) +m hphy VZ Sf] 

. hy a ,2 hyB 
= -lkfJ hahp . aa (SahfJB) +K:jJ hp sp, 

(3b) 

where V is the Alfven speed [V2=B2/(/LoPo); Po is the 
background plasma density]. Evidently, if kf]=O the fast 
and Alfven modes decouple: the fast mode being described 
by the plasma motion Sa confined to planes of constant {3. 
while SfJ represents axisymmetric toroidal Alfven waves. 
Indeed, the left-hand side (LHS) of (3a) is the fast mode 
operator which depends upon derivatives both along and 
across the background magnetic field, and the LHS of (3b) 
is the Alfven wave operator depending only upon field 
aligned derivatives. 
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It is evident from the form of (3) that in our coordi­
nate system the quantities SahpB and sphaB are more con­
venient to work with than the plasma displacements Sa and 
Sp. [Given the general property of Bin (1), it follows that 
sahpB and S{JhaB are proportional to the contravariant 
compone~s o,.!:Sa and lp, respectively.] We define the new 
variables Sa' SP' and br as 

- -
Sa=SahpB;Sp=sphaB; br=brhahp, (4) 

where br is the r component of the magnetic field pertur­
bation, and will be calculated later in this paper. We noted 
above that the LHS of (3b) was the Alfven wave operator 
for Alfven waves polarized in the P direction. The first and 
third terms on the LHS of (3a) may be thought of as the 
Alfven wave operator for waves polarized in the a direc­
tion (i.e., Sa), and it is useful to isolate these terms in the 
succeeding calculation. Denoting the Alfven wave opera­
tors for the variables ta and t p as Da and Dp, respectively, 
(3) becomes 

(5b) 

where 

(6a) 

and 

. hi 'r_ h,hr 
lljr= h .h; Gj - h V2 ' 

J r ! 
(6b) 

The indices ij take the combinations a{3 and (3a. 

III. ALFVEN EIGENMODES AND EIGENFREQUENCIES 

The locations of any resonances in the system of equa­
tions (5) are determined by the natural Alfven frequencies 
of the operator Dp. If we assume suitable boundary con­
ditions at the end of the field lines (e.g., the field passes 
through a perfectly conducting massive boundary on 
whicE both Sa and SP would be zero) the equation 
Dp(sp) =0 is a Sturm-Liouville problem. The same result 
is also true if the field lines are closed, as in some labora­
tory fusion devices. On any given field line (i.e., any a) 
there will be a discrete set of real natural frequencies {li.Jn} 
corresp..Qnding to the oscillation frequencies of the eigen­
modes SPn' The eigenmodes are similar to the displacement 
eigenmodes of waves on ~nonuniform string (cf. Ref. 32). 

The nth eigenmode SPn and eigeEfrequency li.Jn satisfy 
the following equation (subject to SPn=O at the bound­
aries) : 

(7) 

This equation may be solved at every value of a to produce 
the series of eigenfunctions and eigenfrequencies SPn(a,y) 
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and li.Jn(a), where n may take the values 1,2,3, ... (n=1 
£.orresponding to the fundamental mode). In the functions 
SPn(a,y) the coordinate a is a parameter defining the field 
line of interest for which Eq. (7) is then solved as a func­
tion of y. Combining (6) and (7) we find 

Dp(gpn) = (li.J2_li.J~)~rgPn (8) 

which will be of use in the following sections. 
The eigenmodes form a complete orthogonal set on 

each field line. The orthogonality property between any 
two modes (on the same field line) may be expressed in the 
form 

fr2(a) - -
SPnSPm~rdy=O, n=l=m. 

rt(a) 
(9) 

The integral is performed along a field line (a = const) 
between the boundaries y 1 (a) and y 2 ( a ) . 

The completeness of the modes on any given field line 
allows us to write an arbitrary function p (which satisfies 
the same boundary conditions as 513) as a sum over the 
eigenmodes of that field line weighted with appropriate 
coefficients {Pn(a)}, 

"" 
p(a,y) = 2: Pn(a)gPn(a,y). 

n=l 
(10) 

Once again, a should be thought of as a parameter which 
defines the field line of interest. A restriction on our model 
should be noted here. In the succeeding sections we shall 
write the displacements on field lines near the resonant 
surface as a sum over the eigenfunctions of the resonant 
surface. This is only possible if the displacements share 
common boundary conditions in y, requiring that any 
boundaries lie perpendicular to the background magnetic 
field. 

A. Inversion of the Alfv(m wave operator 

In the following sections it is sometimes necessary to 
invert the Alfven wave operator: i.e., if 
1l1[p(a,y)] =q(a,y), and q is given, what is p? If we write 
P as a sum (10), then the problem is to determine the 
coefficients Pn' which obey 

00 

2: (li.J2-li.J~)~rplPn=q. 
n=l 

(11) 

The relation (8) was used in obtaining the above result. 
We may isolate each coefficient in the sum in U 1) by 

multiplying the whole equation through by SPn (n 
= 1,2,3, ... ) and integrating along the field line of interest. 
For these purposes it is convenient to define the operator 

f r2(a) 

(A(a,y» = Ady 
rl(a) 

(12) 

and recalling (9) we find the result 
2 2 -2 ",Br _ -

(li.J -li.Jn)Pn(S pnifa ) - (SPnq)· ( 13) 

The ( - ) terms of ( 13) can always be evaluated (this may 
need to be done numerically for complicated media), and 
thus we can determine all of the coefficients {Pn} provided 
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that W does not match any of the natural eigenfrequencies 
Wn (n=I,2,3, ... ). If one of the Alfven eigenmodes is reso­
nant, then the inversion for p may only be done up to an 
arbitrary component of the resonant eigenfunction: specif­
ically, if the n=r mode is resonant (i.e., w2=w;), then the 
function p may be expressed in terms of q in the form of a 
nonresonant componellt [pnr(a,y)) and resonant compo­
nent (proportional to 5{3r) 

p(a,y) =pnr(a,y) + €S{3r(a,y) , (14a) 

where the nonresonant component is defined as 

nr ~ (~fJnq(a,y» -
p (q,a,y) = £., (2 2) (fP- ( ) --Br( ) )S{3n(a,y). 

no#-r ill -Wn ~fJn a,y va a,y 
(l4b) 

The constant € may not be determined without additional 
information. Moreover, it is evident from (13) that in the 
resonant case the function q is not completely arbitrary, 
but must satisfy the solvability condition 

- • 2 2 <S{3rq) =0, If W =wr. (15) 

IV. GENERALIZED FROBENIUS SERIES 

The coupled equations (5) contain a singularity at any 
value of a where one of the natural Alfven eigenfrequen­
cies matches the frequency w. We shall consider the solu­
tion to the equations in the vicinity of one of these resonant 
field lines, and without loss of generality choose our coor­
dinate a to have its origin at the resonance, i.e., wr(O) =w 
for the resonant rth harmonic. 

If we consider the variation of the wave fields on cross­
ing the singularity at constant y, we would expect to be 
able to write the variation of the fields in a as a Frobenius 
series. (Assuming that the system possesses a regular, 
rather than irregular, singularity-as is the case for simpler 
models.) Now consider moving along the resonant surface 
in y: It should be possible to repeat the argument and write 
the variation of the wave fields in a as a Frobenius series at 
the new value of y. Of course, the coefficients in the two 
series will be different. If the medium is continuous, it is 

likely that we should be able to write the wave fields in the 
vicinity of the resonance as a single Frobenius series whose 
coefficients are continuous functions of y, 

where not all of ao, bo, Co and do are zero for definiteness, 
to fix the permitted values of CT. Note that these coefficients 
are solely a function of y. It is convenient to let a be a 
dimensionless coordinate (e.g., the L-shell parameter). In 
this case ha will have dimensions of length, and haa will 
represent the distance from the resonant surface for small 
values of a. 

The series expansion in a requires that we expand the 
functions H{r and G{r as Taylor series in a; 

· . . 2 . 
Hjr(a,y) =Hjto(O,y) +aHjr1 (O,y) +a HJy2(O,y) 

+ ... , (l7a) 

GJ(a,y) =G70(O,y) +aG71 (O,y) +a2Gj2(0,y) + ... , 
(l7b) 

where 

· 1 an~rl 
Hjrn(O,y) = n! . aan ; 

a=O 

· 1 anGJI (18) 
G'ln(O,y) =, . -a n " 

n. a a=O 

Thus expanded wave operators Di take the form 

and 

- a ( . aSi) 2 i -
Din(Si) = ay Hjrn ay +W GlnSi' (l9b) 

The governing coupled equations (5) may be written in the 
expanded form 

(n~o anDan)' (n~o anau+n+ln(a) n~o cnau+n)+( ~o na
n
-

1
H?;{3n)' (n~o [an(CT+n)+Cn]au+n-l 

+In(a) n~o Cn(CT+n)a
U +n

-
I
)+( n~o a n

nra{3n)' (n~o [an(CT+n){CT+n-l) 

+Cn(2CT+2n-1) ]aa+n-2+1n(a) n~o cn(CT+n}(CT+n-l )aa+n-2) 

=-ik{3( n~o nan-1H?;fJn)' (n~o bnau+n+ln(a) ~o dnaa+ n) 

-ik{3( n~o a nH?;{3n) . ( n~o [bn(CT+n) +dn]au+n-I+ln(a) ~o dn(CT+n)aU +n- l
) (20a) 

and 
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( n~o an Dpn ) . ( ~o bnaO"+n+ln(a) n~o dnaO"+n) 

=-ikp( f anlf[.pn) . ( f [anCa+n) +cn]aO"+n-l+ln(a) f cn(a+n)aa+n-l) 
n=O n=O n=O 

where we have performed the derivatives with respect to a 
required by (5). 

The majority of the remainder of this paper demon­
strates how to determine, in a systematic fashion, the sets 
of Frobenius coefficients in (16) which satisfy the govern­
ing expansions (20). 

In simple systems (where we are only required to solve 
an ordinary differential equation) the lowest order terms of 
(20) would yield an indicial equation specifying two roots 
of a for which there are nonzero solutions. The first step is 
not so simple in our more general calculation; however, in 
Appendix A we prove that if a has any value other than 0 
or -1 we require ao=bo=co=do=O, which for definite­
ness is not allowed. The permitted values of the index a are 
the same as in simpler calculations, and in the following 
sections we show that a= -1 (0) corresponds to the sin­
gular (regular) solution. 

To construct the regular and singular solutions we set 
the index, a, equal to ° and -1, respectively, and solve the 
relations resulting from equating the coefficients of each 
order of an and an In ( a) in (20). The process is rather 
lengthy, but straightforward. The details are given in Ap­
pendix B, but here in the main text we shall only quote the 
results. The appendices yield the displacements ga and gp. 
It is also useful to calculate the magnetic field pressure 
perturbation, and so we also quote the compression~l 
magnetic-field perturbation by.z...expressed in the form of by 
[see Eq. (4)]. The quantity by is calculated from the r 
component of the induction equation, which takes the form 

- aSa .-
by=- aa -lkpSp . (21) 

In order to reduce the length of many of the expres­
sions obtained in the appendices, we shall define the fol­
lowing notation: The nonresonant components of the coef­
ficients band d are solely a function of y-assuming that q 
is a known function [see (14)]. In the appendices we need 
only consider the quantities on the resonant surface at 
a=O, and we define [e.g., (26a) and (26b) below] 

bnr{qo} or dnr{qo} 

~ «(Pnqo) 
= £.. 2 2 ~ ,..R SPn(O,y). (22a) 

n¥=r (cu -CUn)(SPn(O,y) u;/(O,y» 

The function qo(y) =q{O,y) when comparing with (14b), 
and all quantities and integrations are evaluated on the 
surface a=O. Another cumbersome expression is produced 
when applying the solvability condition (15) to determine 
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(20b) 

quantities such as f3 and 6; these constants represent the 
coefficients of the resonant eigenfunction in expansions of b 
and d-cf. E in (14a). We shall define 

«(p,qo) 
(22b) - -

(SPrDPlSPr) 

and once again, everything is evaluated on the a=O sur­
face. 

A. The regular Generalized Frobenius Series 

Adopting the a= 0 index, we may generate the regular 
solution which has the form 

fa{a,y) =ao(y) +al (y)a+a2(y}a2+O(a3
), (23a) 

gp(a,y) =bo(y) +b1(y)a+b2(y)a2+O(a3), (23b) 

by(a,y) = - [ikpbo{ y) +al (y)] 

- [ikpbl (y) +2a2( y) ]a+O(a2). (23c) 

Apart from satisfying the boundary contitions at the ends 
of the field lines, the only other constraint upon the coef­
ficients is a requirement of ao and bo (B8b), 

(24a) 

The other coefficients may be determined in terms of ao 
and bo: 

(24b) 

b l =b'r +f3lPr, (24c) 

br =br{ikpDanal - D{3lbo}, (24d) 

f3l =f31{(ikp/2) [Dan(al) + Dal (ao)] 

-DP1 (bt}-D/32(bo)}, (24e) 

a2= (1/2lf[.po) [ -ikp(lfI;.Plbo+lfI;.pobl) 

- Dao(ao) -lfI;.tJ!ad, (24f) 

b2=b~r +f3iPr, (24g) 

b~r =b~r{(ikp/2) [Dao(ar> + Dal (ao)] 

-DP1 (b1) -D/32(bo)}, (24h) 

f32=f32{Ukp/3) [DaO(a2) +Dal(al) + Da2 (ao) ] 

- DPI (b~r) - D/12(bl ) - DtJ3{bo)}. (24i) 
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B. The singular Generalized Frobenius Series 

Adopting the U= - 1 index the singular solution may 
be generated, and has the form 

Sa(a,y) = - iktf3osPr(O,y)ln(a) +a2(y)a 

-iktPISPr(O,y)a In(a) 

+O[a2,a2 In(a) 1, (25a) 

POSPr(O, y) - -
sp(a,y) a +PISPr(O,y) +015Pr(O,y)lnCa) 

+b2(y)a+d2(y)a InCa) 

+O[a2,a2 1n(a)], (25b) 

- Po-
by(a,y) = -i k-m DfJl 5Pr(0,y) +O[a,a InCa)], 

f?"afJO 
(25c) 

where Po is the amplitude of the singular solution, and the 
other parameters above are defined as 

PI =PI{ -POD(32~Pr-OlDplPr}, 

01 ={h{~tf3oDalPr}' 

.Po - . -
a2=1 k-m DfJl5PrCO,y) +lkp(8'-P')5Pr(0,y), 

f?"afJO 

C26a) 

(26b) 

(26c) 

b2=b~r +PiPr(O,Y) , (26d) 

b~r=bn - (PI +0,) Dplp,-PoD(32~p,- Dpod2'}, 
(26e) 

P2=P2{!UkpDaIf12- Dp,d~' -82DplPr-8ID(32'iPr) 

(26f) 

d2=d~r + oiPr(O,Y) , (26g) 

d~' =d~r{~tf3oDaiPr-OlDplPr}' (26h) 

82=82{(~tl2) UjIDalp,+PoDalPr) - Dp1d'{ 

-8ID(32'iPr}' (26i) 

The procedure for determining the coefficients of both 
the regular and singular series to all orders is given in 
Appendix B. The existence of the logarithmic terms in the 
singular solution is in accord with the results of earlier 
studies2,3,1l,15,16,24,33 except that of HG who disagree with 
all of these studies and claim that there is no singularity. 
Taking the appropriate limit of our solution recovers the 
results of previous exact calculations in the ODE 
problem34 and the PDE problem22-see Ref. 24 for a dis­
cussion. In a separate communication25 we examine the 
analysis of HG, and find that it contains errors. 

v. CONTINUING THE SOLUTION ACROSS THE 
SINGULARITY 

To complete the singular solution it is necessary to 
determine how to continue the solution across the singu-
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larity. One way to do this is to allow the boundaries at the 
ends of the field lines to be weakly absorptive. 15,34 In our 
approach, which is based upon that of Ref. 15, we consider 
that the boundaries are not absorptive but rather that the 
driving of the system increases slowly, so that the time 
dependence of the driving is exp( -iwt), where now 
w=wR+iwi (WR and WI are real, wI>O). The driver am­
plitude grows over a time of order 21T I WI which is assumed 
to be much greater than any Alfven or fast mode transit 
time of the system-thus all wave fields may be assumed to 
have a time dependence of exp ( - iwt). Here W R is the real 
driving frequency that was written in previous sections 
without a subscript. Thus w~ is equal to the square of the 
rth eigenfrequency of the a=O field line, viz. w~=w;(O). 

When W is complex there is no longer an exact reso­
nance at a = ° (or any other real a). In a formal sense, the 
resonance now lies instead at a complex position 
ares=O+ia;. Of course, ai is a function of WI' (Note that 
at this stage ai may be complex.) We seek to determine the 
dependence of ai upon WI' most importantly its sign. 

In this section we shall write 

a (r.B a5P<a,r») 2,.,By-
ay liar ay +CU (J'~ 5P(a,y) 

== Dp(w,a)s{J(a,y). (27) 

Here, Dp(w,a) has an implicit y dependence, which 
should be understood. However, we must also allow for the 
possibility of evaluating Dp at complex positions a and for 
complex frequencies w, both of which are stated explicitly 
for the remainder of this section. (Elsewhere in the paper, 
we have only had to consider real a and w.) As before, the 
operator D{J can be expanded in the Taylor expansion 
about the resonant position ares' which is now complex: 

Now Dp(w,ares ) can in tum be expressed as a Taylor ex­
pansion about the original resonance, at a =0: 

Dp(w,ares ) = Dp(w"O) +iaiDPl (wr,O) 

aDpl +iWI aw + .... 
(wr,O) 

(29) 

The choice of driving frequency determines both the posi­
tion ares of the resonance and the form of the resonant 
eigenfunction gp res' where 

(30) 

We can write gPres in terms of the eigenfunction 'iprat a=O 
with eigenfrequency Wr as 

(31) 
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Using expression (29) up to first order in small quantities 
for DpC6J,ares ) and expression (31) for ~/3res' Eq. (30) 
yields 

. -. BD/31 za j D/31 (6Jn O) S/3r+ Z6J/ B6J S/3r+ D/3(6Jn O) as/3 res=D 
(alr,Q) 

(32) 

using D/3(6Jr,O)S/3r=O. Multiplying by S/3r and integrating 
with respect to yat a=O, we find 

where the operators BDplB6J and D/31 are evaluated at 
6J=6Jr and a=O. Note that the final step is possible because 
agf3 res sati!fies the same perfectly reflecting boundary con­
ditions as 5/3r at the ends of the field lines. If the boundaries 
were weakly absorptive, there would be an additional term 
in Eqs. (32) and (33). For our differential operator the 
factor BDpI B6J I (alr,Q) = 26Jr~' Note that this result im­
plies that ai is real to this order. 

The Frobenius series solutions for the growing driver 
case are the same as before, except that instead of being 
expansions of powers of (a-D) and its logarithm, they are 
expansions in powers of (a-ares) == (a-iai) and its log­
arithm. Consider then the argument of In(a-iai) as one 
goes from Re[a]<O to Re[a] >0. If ai is positive, 
arg(a-ia,) increases; whereas if aiis negative it decreases. 
Finally, we let 6J/> ai-a: arg(a-iai) increases/decreases 
by 1T on moving from a =0- to a =0+, and this determines 
how to continue the solution across the resonance in the 
case of a real driving frequeqcy. 

Having taken the limit 6J[""-+0, the a component of the 
plasma displaceme!!,t is found to be la= - iktfiol/3r In I a I 
at a=O- and s~=-iktfioS/3r(lnlal +i1rsign[a;]) at 
a=O+. (Of course, we mean sign[a;], sign[6J/] to be eval­
uated before taking the limit.) This procedure may be re­
peated for the other logarithmic terms in the singular se­
ries. Thus given the solution on one side of the resonance, 
we can construct the corresponding singular series solution 
on the other side. 

In the previous studies of ODE resonance problems,2 it 
is clear that the change in phase of the argument of the 
logarithm depends solely upon the gradient of the rth 
Alfven eigenfrequency at the resonance. The choice of sign 
of the phase change means that the resonance absorbs en­
ergy, rather than radiates energy. It is not evident from our 
more general analysis [see (33)] how ai depends on 
d6J;(a)/da. For example, is it possible to specify a D/3 
which will yield an arbitrary eigenfrequency gradient 
across the resonance? The factor <l/3rD/31'l/3r) enters many 
of our expressions [e.g., when we apply the solvability con­
dition (22b)], arid it is worth developing an interpretation 
for g. Let the rth eigenmode and eigenfrequency satisfy 
DPOSf3r=O at a=O. Now consider the change in eigenmode 
and eigenfrequency on an adjacent field line at a=oa (oa 
real). The change to the density, eigenfrequency, and 
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eigenmode relative to those on a=O are 
8eo=8a[Be.o(a,y)/Ba]o, 86J;=8a(d6J;/da)o and 
8S{:lr=8a[BS/3r(a,y)/Ba]o, respectively, all the derivatives 
being evaluated at a=O. Substi!,!lting these changes in to a 
Taylor series expansion of DpS{:lr=O about a=O we find 
the terms linear in oa satisfy 

B'l/3rl ( ,.,8 d6J; I ) -
Df30 Ba a=O + D{:ll + (:(~b' da a=O 5{:lr( 0, y) = O. 

(34) 

Multiplying Eq. (34) by 5{:lr and integrating along the 
background field line a=O we find the simple relation 

d6J; I -_ <S/3rD/31S/3r) 

da a=O <l{:lrd!tb'l{:lr) . 
(35) 

Recalling that BDpo/B6J2 I (alr,Q) = d!tb it is clear from (33) 
and (35) that 

_ /(d6J;(a») _ /(d6Jr(a») ai- 26J,nJ/ d =6J/ d . a a . a=O a=O 
(36) 

Thus, as one would anticipate, the sense of the phase 
change of the log terms across the resonance is determined 
by the gradient of the resonant eigenfrequency. Note that 
the signs of ai' 6J/> and d6J/da are related by 
sign[dct>/da] = sign[a;] , since 6J/ is by assumption positive. 

The resonant layer actually absorbs energy and is a 
consequence of the jump in phase of Sa' which leads to a 
discontinuous Poynting flux across the resonant layer. The 
a component of the Poynting flux, Sa' which will not time 
average to zero is ,uolBRe[brexpi(ktfi-6Jt)] 
X Re[va exp i(ktfi-6Jt)], where Va is the plasma velocity 
in the a direction. After averaging with respect to time this 
is equivalent to iB6J(s!br - 5ah~)/(4,uo), where the per­
turbations in this expression have no implicit time 
dependence-i.e., they are related to the functions glven in 
(23) and (25) via the definitions (4). The difference be­
tween the Poynting flux at a=O- and that at 0+ is the 
density of power absorbed by the resonant surface, 

Sa(O-) -Sa(O+) 

. 1T6JI/3oI 2
- _ 

= -'-slgn[ai] 2,uoh/3hr S/3r(O,y) D{:ll5/3r(0,y) , (37) 

where we have employed the definitions in (4) and (25). 
[Note that the regular solution makes no contribution to 
(37), since the regular solution is continuous at a==O.] 

An elemental area of the resonant surface is 
h/3hy d/3 dy. Since our equilibrium is independent of /3 we 
may integrate the Poynting flux to find, the power absorbed 
per unit of the /3 coordinate. Employing (35) we find 

(38) 
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The modulus sign allows for the fact that 
sign[dlU,Ida]=sign[aJ. The energy absorbed by the reso­
nance is positive definite, as one would expect. 

VI. NUMERICAL SOLUTIONS 

One of the novel features of our analysis is the ability 
to derive all of the coefficients in the singular and regular 
series in a systematic fashion. Whilst numerical studies are 
suitable away from the resonance, it is impossible for them 
to resolve the singularity. A compromise is to integrate the 
governing equations numerically up to the neighborhood 
of the resonance, and then match onto an analytical series 
solution. This approach was adopted by Ref. 23 in the 
ODE problem and enabled them to calculate the quasi­
eigenmodes of the system which oscillate and damp as en­
ergy is absorbed by the resonance. Solely numerical solu­
tions, such as a finite element analysis will produce normal 
modes (with real eigenfrequency) and no net absorption at 
the resonance. 35 (Damped modes can be obtained by this 
method if the ionosphere is not a perfect reflector of 
energy.36) 

Let us suppose that the equations have been solved 
numerically up to some small value of a where the numer­
ical scheme is still accurate. Such a solution can furnish us 
with the values of~p, ~a' a~p/aa, and a~a/aa along a field 
line at a, close to the resonance. Our series solution is 
determined by three factors; f3o, ao(r) and bo(r). The su­
perscripts "i" and "s" will be used to avoid ambiguity 
between the coefficients in the regular and singular series. 
The first terms in our series solution are, from (23) and 
(25), 

- -
5a(a,r) = -ikpl305Pr{O,r)ln(a) +a(;Cr) 

+O[a,a In(a)], (39a) 

- f3o- --
s{ia,r) =a- SPrCO,y) +S~ In(a)sPr(O,y) +f3\S,Br(O,y) 

+b(;C r) +O[a,a In(a)], (39b) 

ala f3okp-
aa = -fa S,Br(O,y) +O[l,ln(a)], (39c) 

al,B -f3o - s~ -
aa =7 S,Br(O,r) +a- S,Br(O,r) +O[ I,ln(a)]. 

(39d) 

We only require three equations to determine f3o, ao( r) 
and boer). Since the omitted terms in (39c) are relatively 
more important than those omitted in (39d), we shall not 
use (39c). Taking the product of lPr(O,r)~ and Eq. 
(39d) then integrating with respect to r along the resonant 
field line we find 

f30 = ( l,Br~ 1:) / [ (l,B,G~b~,Br> (:~ - ~ ) ], 
Lim a-.O. (40) 
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The term a~p/aa is evaluated at small (but nonzero a) 
from a numerical integration. As the numerical solution is 
found at smaller and smaller a, we expect that ~p will be 
proportional to a-I, thus the numerator in (40) will be­
have like a-2

• When (40) is evaluated for a .... O the value 
of the constant f30 should be converged upon. 

Once f30 has been determined (39a) and (39b) may be 
used to calculate the functions ac( r) and bo( r), by com­
paring with the numerical solutions of ~a and ~p at small, 
but finite, a. The solution may be continued across the 
singularity as described in Sec. V, and then used as initial 
conditions for the numerical solution on the other side of 
the resonance. Note that the regular coefficients must sat­
isfy the constraint (24a), which may be used as a test of 
the accuracy of the numerical solution and the matching 
on to the Generalized Frobenius Series. 

Although we have generally been concerned with real 
oscillation frequencies there is no reason why we should 
not consider complex frequencies. 23 In this case, the singu­
larity occurs at a complex a coordinate, as we found in Sec. 
V. The branch cut from the singularity will cross the real a 
axis, which may be circumvented by deforming the con­
tour into the complex a plane and around the singularity. 
In this case, the Generalized Frobenius Solution should be 
an expansion about a complex a. 

VII. DISCUSSION AND SUMMARY 

Many previous studies have shown how the amplitUde 
of the singular solution (f3o) is sensitive to the overlap 
integral of the resonant eigenfunction and the compres­
sional magnetic field along the resonant field line. lI ,16,17,22 
This quantity measures how effectively the magnetic pres­
sure gradient ( a: by) can drive the resonant eigenfunction. 
In nonuniform fields the geometry of the background will 
modify the efficiency of coupling, as we show below. 

Note that the r ,£omponegt of the ti!!1e-integrated in­
duction equation is by= - (aSa/Ba+ ikpSp) , and so (5b) 
may be written 

(41) 

It is clear from the series solutions for by in (23) and (25) 
that to lowest order by-O(ao), say, byO(r). Expanding 
the functiqp.s and operators in (41) in terms of a, multi­
plying by SPr and integrating along the resonant field line, 
we find to lowest order 

(42) 

Employing (35), and recalling the definitions (4) and 
(6b) we may write Po in terms of the more physical quan­
tities SP and by, 

. kp (BhahrSP,byO) (dlUr)-1 
f30=-l .-

2J1.olUr <S,BrPsp,hahphy> da ° . (43) 

This is consistent with the coupling efficiency found in Eq. 
(15) of Ref. 11, and Eq. (17) of Ref. 17. The integral in 
the denominator of (43) is simply a normalizing factor, 
while the integral in the numerator tells us how effectively 
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the fast mode (b,,<) can drive the resonant eigenfunction 
(S[3r)' It is interesting to convert this factor into an explicit 
integral along the length of the resonant field line. The 
angle brackets represent integration with respect to y. An 
element along the field line of dy has a physical length of 
dl=hidy. Moreover, from Eq. (1) we know 
Bha =f(a,[3)lhp , and since we integrate at constant a and 
[3, the efficiency of coupling is proportional to a factor 

f sp,h,,<) dl 
h[3 

(44) 

which suggests greater efficiency when h{3 is smallest-i.e., 
the separation of field lines in the invariant direction is 
small. For planetary magnetospheres this occurs at higher 
latitudes on the portions of the field line close to the ion­
osphere. Besides the geometrical effect of the background 
the factor (44) also depends upon the structure of the 
compressional wave field and the resonant eigenfunction. 
The form of these waves will depend upon the background 
field and density and the boundary conditions. Typical ion­
ospheric boundary conditions would require that S{3r be 
small at high latitudes, although by may be large there. The 
combination of these factors will determine how effectively 
magnetic pulsations may be excited in the terrestrial mag­
netosphere, and the efficiency of heating by resonant ab­
sorption which is of interest in laboratory fusion devices 
and closed field line regions in the solar corona. It may be 
possible in some situations to adjust the density distribu­
tion and boundary conditions to give particularly efficient 
heating. 

Most previous studies have concentrated upon the sin­
gular solution which dominates the perturbation around 
the resonance. To conclude we give the explicit leading 
order terms of our series solution. (The leading order com­
pressional magnetic field b,,<) actually represents a combi­
nation of the regular and singular series.) Incorporating 
( 4) into the series (25) yields 

(45a) 

(45b) 

(45c) 

These relations confirm the a-I and In(a) singularities 
found in the earliest one-dimensional uniform field models 
are still present in the more general resonances found in 
our two-dimensional partial differential equations. Our 
findings are contrary to those of HG, who claim that no 
such singularities will exist in systems like those considered 
in this paper. We find their calculation to be in error, and 
present a detailed discussion elsewhere.25 
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APPENDIX A: PERMITTED INDEX VALUES 

In this appendix we demonstrate that nontrivial solu­
tions to (20) exist only when the index u assumes the value 
of 0 or - 1. The a U

- I and au-lIn a coefficients of (20b) 
yield 

UCo=O. 

(Ala) 

(Alb) 

Suppose that u=o: in this case (Ala) requires co=O. Al­
ternatively, suppose that u~O: now (Alb) requires co=O. 
In either case we may conclude, for any value of u, that 
(AI) may be written in the condensed form 

uao=O. 

(A2a) 

(A2b) 

The coefficients of the lowest order terms from (20a) con­
tain no additional information, but the next order (au- I 

and a u- I In a) yields the following relations: 

alu(u+ 1) +cl (2u+ I) = -ikp(bou+do), 

CI (u+ I )u= ~ikpdou, 

(A3a) 

(A3b) 

whilst the next order of (20b) (aU and aU In a) yield 

D{:JOCbo) = -ik~{:JO[al (u+ I) +ctl +~plf[,{:JObo, 
(A4a) 

(A4b) 

MUltiplying (A3a) by u, taking away (A3b), and then 
substituting for terms in al and CI from (A4a) the result is 

c?D{:JO(bo)=0 (A5a) 

while substitution of (A3b) into (A4b) yields 

(A5b) 

Moving on to the next order (aU and aUln a) of (20a) we 
find 

DaO(ao) +H~{:JO[a2(u+2)(u+ I) +c2(2u+3)] 

+HJx{31 [al (u+ 1)2+2cI (u+ 1)] 

= -ikp{HJx{:JO[bl (u+ I) +dd 

+HJxPI [bo(u+ 1) + do]}, 

HJxPlcl (u+ 1)2+HJx{:JOc2(u+2)(u+ 1) 

= -ik{3[HJx{:JOdl (u+ 1) +HJxPldo(u+ 1)] 

(A6a) 

(A6b) 

while the terms in a u+1 and au+lln a from (20b) require 
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D{KJ(bl ) + DfJI (bo) 

= -ikfJ{fi1'a{JO[a2(a+2) +C2] 

+fi1'aPl [al(a+ 1) +cd}+k~(.mfJObl +mmbo), 

(A7a) 

D{KJ(dl ) + DfJI (do) 

= -ikfJ[m~2(a+2) +mmci (a+ 1)] 

+kp(lfYa{JOd, +lfYaP1do). (ATh) 

To summarize our conclusions so far [(A2) and (A5)], we 
find that for any value of a the lowest order coefficients 
satisfy 

(A8) 

Now consider the case where a has any value except ° or 
-1. Under this restriction (A8) leads to the general solu­
tion 

- -
ao=O, bo=f3oSfJr> co=O, do=DoSfJr> (A9) 

wher~ 'ifJr is the resonant eigenfunction satisfying 
D{KJ(SfJr) =0, and f30 and 00 are unspecified constants. 

Multiplying (ATh) by (a+ 1) and subtracting (A6b) 
from the result we find (since we are assuming that 
a+l=#» 

(AlOa) 

where we have substituted do from Eq. (A9). Similarly, we 
may mUltiply (A7a) by (a+ 1) and eliminate terms in a2 
and C2 using (A6a) and (A7b), respectively. Employing 
(A9) and (AlOa), and recalling that a:¥=0, -1, it follows 
that 

(AlOb) 

To have well-behaved solutions it is necessary that we be 
able to invert the operator D{KJ in (AlO). In Sec. III, we 
deduced the solvability condition (15) that would guaran­
tee the property of inversion. Applying this condition to 
(AlOa) and (AlOb) it follows that 

(All) 

The form of SfJr is determined solely by the variation of the 
scale Jactors hi and density along the resonant field line; 
D{KJ(S{3r) =O-see (6). The operator D{31 depends upon 
how gradients of these quantities in a vary along the res­
onant field line, and is quite independent of D{KJ. (There 
may be some constraint upon the permissible variation of 
the scale factors, since B is both solenoidal and irrota­
tional, however, the gradient of the plasma density and 
hence Dm is quite arbitrary.) 

Although it will certainl:t be p~sible to define a con­
trived a medium in which (SfJrDIJlS{3r> =0, a general me­
dium will not meet this requirement. In general, the con­
dition (All) is satisfied by setting f3o=oo=O. 
Consequently, all of the lowest order coefficients are zero 
[see (A9)], and we conclude that a solution with a*O, -1 
would have ao=bo=co=do. 
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The calculation therefore leads us to the result we set 
out to prove: the only nontrivial solutions to (20) exist 
when a= -lor 0. This is comforting, since if we introduce 
simplifications into our model (e.g., let the magnetic field 
be uniform) we can recover the results of previous simple 
models. Indeed, in these models (governed by an ordinary 
differential equation) the solution generated with a= -1 is 
the singular solution, and the one generated by assuming 
a=O is the regular solution (e.g., Ref. 34). In the main 
text it is shown how our method may be used to produce 
generalizations of their results. 

APPENDIX B: GENERALIZED FROBENIUS 
COEFFICIENTS AND RECURRENCE RELATIONS 

In this appendix we carry out the details of the calcu­
lation required to generate the regular and singular Frobe­
nius series. To this end it is convenient to write general 
expressions for all of the terms from (20) of a given order. 
The coefficients of terms of order a CT+N from (20a) satisfy 
(N)O) 

N N+l 

L Dai(aN-i) + L U+ l)mfJ(i+l}[aN+I-i(a+N+l 
i=O i=O 

N+2 

-0 +CN+I-il + L m fJJaN+2_i(a+N+2-i) 
i=O 

X (a+N+ l-i) +CN+2_i(2a+2N+3-2i)] 

N 

= -ik{3 L U+ 1)m{3(i+l)bN- i 
;=0 

N+l 

-ikfJ L m{3i[bN+ I - i(a+N + l-i) +dN+ 1- i) 
i=O 

(Bla) 

while the a,,+Nln(a) terms from (20a) yield 

N N+l 

L Dai(CN-i) + L U+ l)m{3U+I)CN+I-i 
i=O i=O 

N+2 
X(a+N+l-i)+ L m Pi CN+2_i(a+N+2-i) 

i=O 

X(a+N+l-i) 

N 

= -ikfJ L U+ Om{3(i+I)dN - i 
i=O 

N+l 
-ik{3 L lfYaPidN+I_i(a+N+l-i). 

i=O 
(BIb) 

Similarly, the coefficients of the aCT+N terms from (20b) 
yield 
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N 

L D{3i(bN - i ) 
i=O 

N+l 

= -ikp L Hl'a{:Ji[aN+l-i(O+N + I-i) +cN+ I-i] 
i=O 

N 

+14 L /PaPibN-i 
(=0 

(B2a) 

and the coefficients of aU+Nln (a) terms from (20b) satisfy 

N N+l 

L D{3i(dN- i)=-ik{3 L /Pa{3i CN+l-i(a+N+l-i) 
~o ~o 

N 

+14 L /PaPidN-i' 
i=O 

(B2b) 

The relations above are valid for N,O. Further equations 
that we need to supplement these general relations corre­
spond to the a u- 1 and a u- l In(a) coefficients of (20a) and 
of (20b). These are already given in (A3) and CA2), re­
spectively. Equations (A2), (A3), (BI), and (B2) are a 
concise summary of all the relations required to solve for 
the coefficients. [Note that the N =0 versions of (BIa) and 
(BIb) have already been written explicitly as (A6a) and 
(A6b), respectively. The N=I versions of (B2a) and 
(B2b) are also written explicitly as (A7a) and (A7b).] 

1. The regular solution (0'=0) 

Now we tum our attention to the generation of the 
regular solution and set a equal to 0 in this subsection. 
Note that we are free to use the relations in CA2) here. For 
the regular series (A3a) reads 

Cl = -ik{3do (B3a) 

while the N =0 relation from (B2b) reads 

D(30(do) = -ikrfi"a(30Cl +k-pH"a{:JOdo. (B3b) 

Combining (B3a) and (B3b) we find 

D(30(do) =0; i.e., do=80S{3r' (B4) 

The constant 80 is unspecified at present, however, it is 
possible to place a constraint upon it by considering the 
next-order terms. The N =0 terms from (BIa) yield [after 
recalling the relations (A2)] 

Daa(ao) +/Pa(30(2a2+ 3c2) +/PaPl (al +2cl ) 

= -ikrPrr{31bo-ikrPrr(30(bl +dl ) -ikrPrr{:Jldo (B5a) 

while the N=O terms from (BIb) require 

m{31Cl +2m(30C2= -ikrPrrf30dl-ikrPrrPldo. (B5b) 

The N = 1 terms from (B2a) and (B2b) yield 

D(30(bl ) +DPI (bo) = -ikp[mf30(2a2+ c2) +m{3l (al +Cl)] 

+ 14 [/Pa(30b l +Hl'a{:Jlbo] (B6a) 

and 
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Df30 (d1) + DpI (do) = -ik{3(2/Paf30c2+/Pa{31Cl) 

+ 14 (mf30d1 +/Pa{3ldo). (B6b) 

Eliminating C2 between (B5b) and (B6b) we find 
D(30(d1) + D{31 (do) =0, and applying the solvability condi­
tion (15) we require the constant 80 in (B4) to satisfy 

- -
80 (SPrDPl (SPr) > =0. (B7) 

Applying similar arguments to those following (All), we 
conclude that in general the solution to (B7) is 80 =0, i.e., 
do=O. Consequently, Cl is also zero by (B3a). 

Of the lowest order coefficients we have deduced that 
co=do=O, from CA2) and (B7)-a reassuring result, since 
we would not anticipate any logarithmic functions in the 
regular solution. The other lowest order coefficients 
(ao,bo) are unconstrained and may be chosen to match 
some boundary conditions. There is, however, a general 
condition that aD and bo must satisfy and is found by elim­
inating a2 from (B5a) and (B6a), 

Df30(b1) + Dpl (bo) =ikpDaa(ao)· 

Applying the solvability condition, we find 

(B8a) 

(B8b) 

We now tum our attention to solving for the next coeffi­
cients in the series. [So far we have deduced that ao and bo 
are arbitrary, but satisfy (B8b), and co=do=cl =0.] The 
coefficient al may be determined from the N =0 solution of 
(B2a) which is already written explicitly in (A4a). For the 
regular solution, we find 

i 
al = k-f.1Y Df30(bo) -ikpbo 

{:f'.Laf30 
(B9a) 

while bl is found from inverting the Alfven wave operator 
in (B8a) 

bl =bt +f3l{3r> 
(B9b) 

bnr _ ~ (lPn(ikpDaoOl- D{:Jlbo) > 'j; (0 ) 
I-£.. 2 2 ~ ".,By ':>pn ,y. 

n#-r (m -mn)(S{3n(O,Y)lfao> 

Here, b~r is the nonresonant component of bl , defined in 
accordance with (14), and f31 is the amplitUde of the res­
onant component (as yet undetermined). 

The log terms play no role in the regular solution-a 
point to which we return later in this subsection. Conse­
quently, the relations (BIb) and (B2b) provide no useful 
results (they are identically zero), however, the N = 1 re­
cursion relation from (BIa) and the N=2 relation from 
( B2a) provide the following useful information: 

DaO(al) + Dal(ao) +2mPla2+ 2m{32al 

+ 6m~3 +2m{3la2 

= - ikrfi"a{31bl - 2ikrPrr{32bo - 2ikrPrrf30b2 - ikrPrr{3lbl 

(BlOa) 

and 

A. N. Wright and M. J. Thompson 701 

Downloaded 07 Sep 2010 to 138.251.201.127. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



D~(b2) + DfJI (b 1) + DfJ].(bo) 

= - 3ikplP' a{JI.P3 - 2ikrPrxfJIa2 - ikplP' afJ].a 1+ k7flJzpob2 

+K'a{Jlbl +K~fJ].bo. (BlOb) 

Eliminating a3 between (BIOa) and (BlOb) we find 

D~(b2) + D{J1 (b l ) + DfJ]. (bo) 

= (ikP'2) [DaO(al) + Dal (ao)]· (BII) 

Applying the solvability condition to (BIl), we may de­
duce the value of the constant 131 in (B9b), 

(B12) 

The coefficient b2 may be determined, up to a component of the resonant eigenfunction (132GPr)' by inverting the Alfven 
wave operator in (B 11) , 

b2=b~r +13lPn (B13a) 

nr ,,<l{Jn[UkP'2)[DaO(al)+Dal(ao)]-D{JI(bl)-DfJ].(bo)])-
b2 = £.. 2 2 ~"..,8y S{Jn(O,y), (B13b) 

n# (UJ -UJn) <GPn(O,Y)L7'ao> 

while a2 may be found from either the N =0 relation of 
(Bla) or the N= 1 relation of (B2a). For example, em­
ploying the former recursion relation we find 

1 
a2=21ft:. [-ikp(JlYa{Jlbo+m~bl) - DaO(ao) 

~ 

-JlYa{Jlatl· (B14) 

If the relation from (B2a) had been used, it is possible to 
prove that the two results are equivalent by realizing that 
( 8) and (B9b) yield the property 

(GPn(ikpD~I- Dp1bo) > d!.Y- 0 
(~n(O,y)dab> aOGPn( ,y). 

(B15) 

The general procedure for constructing the regular solu­
tion is now becoming evident. Suppose we know all of the 
an and bn up to and including n=m, except for the con­
stant 13m. We begin by taking the N=m and N=m+ 1 

We proved earlier that the logarithmic coefficients Co, 
do, and CI were all zero in the regular solution. We now 
prove by induction that all of the cn and dn coefficients are 
zero. 

Suppose that all Cn and dn are zero for n=O, 1, 2, ... ,m. 
Then (B2b) with N=m reads 

0= -ikp(m+ l)m~c(m+1) (B18a) 

while the N = m + 1 relation of (B2b) is 
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recursion relations from (Bla) and (B2a), respectively. 
Eliminating a(m+2) from these relations yields an equation 
of the form 

Applying the solvability condition (15) to (B16) deter­
mines the constant 13m , while inverting the Alfven wave 
operator in (B16) determines the nonresonant component 
(b(~+I» of b(m+I}' The resonant component 13(m+l)lPr is 
determined when this procedure is repeated. The coeffi­
cient a(m+1) may be found from either the N=m-2 and 
N = m - 1 recursion relations of (B 1 a) and (B2a), respec­
tively. 

We have explicitly determined the first three coeffi­
cients in the regular series, except for the constant 132' We 
leave it as an exercise to the interested reader to show that 
the above prescription yields 

D~(d(m+l) = -ikp(m+2)m~(m+2) 

+k7flJz~(m+l) . 

Similarly, (B 1 b) with N = m yields 

(B17) 

(BI8b) 

(BI8e) 

Evidently, Eq. (B18a) proves that the next coefficient in 
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the series c(m+ 1) will be zero. Eliminating c(m+2) between 
(BI8b) and (BI8c) we conclude that d(m+1) must be pro­
portional to the resonant eigenfunction, 

(BI8d) 

The constant 8(m+ 1) is determined by applying the solv­
ability condition to the next order of the equations: Elim­
inating c(m+3) between the N=m+ I relation of (Bib.) 
and the N=m+2 relation of (B2b), we find 

(BI8e) 

Once again the solvability condition requires that 8(m+ I) 
[and consequently (d(m+I)] be equal to zero. Since we 
already know that do and Co are zero in the regular solu­
tion, it follows by induction that all of the higher cn and dn 
are also zero. Thus there are no logarithmic terms in the 
regular (a=O) Frobenius series. 

2. The singular solution (0-= -1) 

In this subsection we consider how to construct the 
singular Frobenius series, and a will always adopt the 
value of -1. The general results (A8) give the following 
lowest order coefficients 

ao=O, bo=/3olpr> co=O, do=8o'lPr. (BI9) 

The lowest order equations (A3), (A4), (A6), and (A7) 
may also be employed: (A3b) reads O=ikpdo, while (A3a) 
gives the value of C1, 

do=O, C1 = - ikrf3osPr. (B20a) 

For the singular solution equation (A6a) reads 

c2=-ikpd1. (B20b) 

Employirig the results (B20a) and (B20b), relation (A7b) 
simplifies to 

(B20c) 

The constant 81 will be determined later. The other recur­
sion relation from this order is (A7a); incorporating the 
above properties we find the relation becomes 

Df30{b1) +/3oD{1l (lPr) = -ikplf'[.f30(a2- ikpdl) 

(B20d) 

and will be used presently to determine a2. 
To proceed further we need to consider the higher or­

der recursion relations. The N = I relations from (Bla) 
and (Bib) supply the equations 

DaO(a1) +dfx/31{a2- ikrPl/3r) +dfxf30(2a3+3c3) 

(B2Ia) 

and 

(B21b) 

While the N =2 relations of (B2a) and (B2b) furnish the 
recursion properties 
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Df30(bi) + D{31 (b l ) +/3oD/32 (S{3r) 

and 

= -ikplf'[.f30(2a3 +C3) -ikplf'[./31 (a2- ikrPlpr) 

+~emf30b2+~emplb1 (B22a) 

Df30(d2) + 81D{31 (gPr) = -2ikPaf30c3+~emf30d2' 
(B22b) 

respectively. [In the above we have employed (B19) and 
(B20).] 

Eliminating c3 between the relations (B2lb) and 
(B22b) yields 

Df30(d2) +81Dp1 (lPr) =~rf3oDaO(lPr) (B23a) 

while eliminating a3 between (B2Ia) and (B22a) gives 

Df30(b2) + DP1 (b1) +/3oD{32 (SPr) 

(B23b) 

We can determine 81 (i.e., d1) by applying the solvability 
condition to (B23a) 

cS
l 
=~rf30 (~rDaO(~r» . 

(S/3rD/31 (SPr» 
(B24a) 

Note that in the uniform field calculation, which many 
studies have focused upon, the operator Daa is identical to 
Df30. Consequently, in such studies the RHS of (B23a) 
would be zero, as would d I. 

Applying the solvability condition to (B23b). we find 

(SPr[ D/31 (b1) -ikpDaa(a1)]) 

= - (lp'[/3oD/32 (l/3r) +81 D/31 (l/3r)]). (B24b) 

Apart from this constraint upon (a1,b l ) the coefficients are 
arbitrary. Indeed, we could modify a1 by L.\a1 and b1 by L.\b1 
and still satisfy (B24b) provided that 

(B25) 

It is interesting to compare this relation with the condition 
we found the regular solution must satisfy, namely (B8b). 
The two equations are identical save for the indices of the 
coefficients. Note that in the singular solution (a= - I) a 1 

and b1 describe displacements of order aD, similarly in the 
regular solution (a=O) ao and bo also correspond to the 
order aD. It is evident that modifying the singular solution 
by L.\a1 and L.\b1 is equivalent to adding on a component of 
the regular solution. For the remainder of this section we 
shall, without loss of generality, set the singular coefficients 
a1 and b1 to be 

(B26) 

since any physical solution may be constructed by adding 
on an appropriate regular solution later. 

Given the singular coefficients in (B26) we may deter­
mine the value of /31 directly from substitution into (B24b) 

(fpr[/3oD/32(lPr) + 81D{31 (lPr)] > 
(SPrD{31 (S/3r) > 
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So far we have determined (ao,bo,co,do) and 
(a, ,b, ,c, ,d,) for the singular solution. The coefficients a2 
and C2 follow directly from (B20d) and (B20b), respec­
tively, 

- -
C2= -ik1J3o (~rDaO(~r» lPr' (B28b) 

(SPrDp, (S/3r) > 
The nonresonant components of the coefficients b2 and d2 
may be determined from inversion of the wave operator 
DfJ) in Eqs. (B23b) and (B23a), respectively, 

(B28c) 

bnr _ L (tPn[ (f3, +0,) D/31lPr+f3oD/32l/3r+ Dpod~r]) 
2 - - n=l=r (al2-al~)(~n(0,y)cfab> 

X SPn(O,y) , 

d2 = d~r + oipn 
(B28d) 

(B28e) 

dnr = ~ <l/3n[~rf3oDaOl/3r-OID/3l/3r] > [; (0 ) (B28f) 
2 £.. 2 2 ~ rlly ,=,pn ,y, 

n=l=r Cal -aln) <S/3nCO,y)l1'ao> 

the constants f32 and 82 to be determined later. 
An algorithm is now becoming apparent by which we 

may construct the series of coefficients. For example, 
suppose we know all of the coefficients up to 
(am,b(m_,),cm,d(m_I)' Furthermore, let us know the 
nonresonant components b'::; and d'::; of the coefficients bm 
and dm, but Ilot their resonan!.. components 13m and 8m: 
(bm=b'::;+f3msPr; dm=d'::;+omS/3r)' How do we calculate 
the next order of coefficients? 

Calculating the next orders of the band d coefficients 
is fairly complicated, and involves inverting the Alfven 
wave operator DfJ)' However, it is relatively easy to calcu­
late the next coefficients for a and c. The following four 
steps will advance our current knowledge to the next order. 

(1) TheN=m-l versionof(Bla) gives the termc(m+l)' 
(2) The N=m version of CB2a) yields a(m+')' (3) Elim­
inate C(m+2) between the N=m version of (BIb) and the 
N = m + 1 version of (B2b) to get an equation of the form 

(B29a) 

Applying the solvability condition to the above relation 
will determine the constant Om' whereas inverting the op­
erator DfJ) will yield the nonresonant component (d7~+ 1) ) 

of d(m+ I)' C 4) Finally, we take the N =m edition of (Bla), 
use the N=m+ 1 version of (B2a) to eliminate a(m+2) and 
then the N=m+ 1 edition of (B2b) to remove c(m+2)' The 
result is something of the form 

D{30Cb(m+'» +D/3I(bm) + ... + D{30(d(m+I» + ... =0. 
(B29b) 

[AU of the terms represented by ... are known quantities. 
Note tEat the undetermined resonant component 
(O(m+l)S/3r) does not affect (B29b) since it is operated on 
by DfJO, giving zero.] Applying the solvability condition to 
(B29b) will determine the constant 13m , while inverting the 
operator DfJO will determine the nonresonant component 
(b7~+I) of b(m+l)' We have now advanced to the next 
order. This process may be repeated indefinitely, and as 
many terms as are desired in the Generalized Frobenius 
Series may be determined. 

We leave it as an exercise to the interested reader to 
confirm that the m=2 editions of (B29a) and (B29b) are 

DfJ)(d3) + DPl (d2) + D/32(dt } 

(B30a) 

and 

DfJO(b3} + DPl (b2) + D/32(b1) + D{33(bo) 

+H DfJ)(d3) + DPI (d2 ) + D/32(d,) -ik/3DaO(a2)] =0. 
(B30b) 

Applying the solvability condition to the above equations 
determines 132 and 02' 

<~PrH<ik/3Daaa2- Dp1d1r -82D/3I~/3r-o,D/32l/3r) - Dp1b1' -f31 D/32l/3r-f3oD{33l/3r] > 
f32=----------------------~~--~------------------------

<lprDPl Cl/3r) > 
(B31a) 

[Equations (B20a) and (B20b) were employed in evaluat­
ing the above expressions.] Thus we have derived the first 
three orders of the coefficients in both the regular and 
singular Generalized Frobenius Series. 
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